- Volume 97, Issue 11, 2016
Volume 97, Issue 11, 2016
- Review
-
-
-
Biosafety standards for working with Crimean-Congo hemorrhagic fever virus
Manfred Weidmann, Tatjana Avsic-Zupanc, Silvia Bino, Michelle Bouloy, Felicity Burt, Sadegh Chinikar, Iva Christova, Isuf Dedushaj, Ahmed El-Sanousi, Nazif Elaldi, Roger Hewson, Frank T. Hufert, Isme Humolli, Petrus Jansen van Vuren, Zeliha Koçak Tufan, Gülay Korukluoglu, Pieter Lyssen, Ali Mirazimi, Johan Neyts, Matthias Niedrig, Aykut Ozkul, Anna Papa, Janusz Paweska, Amadou A. Sall, Connie S. Schmaljohn, Robert Swanepoel, Yavuz Uyar, Friedemann Weber and Herve ZellerIn countries from which Crimean-Congo haemorrhagic fever (CCHF) is absent, the causative virus, CCHF virus (CCHFV), is classified as a hazard group 4 agent and handled in containment level (CL)-4. In contrast, most endemic countries out of necessity have had to perform diagnostic tests under biosafety level (BSL)-2 or -3 conditions. In particular, Turkey and several of the Balkan countries have safely processed more than 100 000 samples over many years in BSL-2 laboratories. It is therefore advocated that biosafety requirements for CCHF diagnostic procedures should be revised, to allow the tests required to be performed under enhanced BSL-2 conditions with appropriate biosafety laboratory equipment and personal protective equipment used according to standardized protocols in the countries affected. Downgrading of CCHFV research work from CL-4, BSL-4 to CL-3, BSL-3 should also be considered.
-
-
- Animal
-
- Double-strand RNA Viruses
-
-
Genome analysis and pathogenicity of reticuloendotheliosis virus isolated from a contaminated vaccine seed against infectious bursal disease virus: first report in China
More LessSpecific-pathogen-free (SPF) chickens were inoculated with the virus seed of an infectious bursal disease virus (IBDV)-attenuated vaccine, and positive reticuloendotheliosis virus (REV) antibody levels were subsequently detected in the chicken sera, indicating potential REV contamination of the vaccine. After neutralization with IBDV-positive blood serum, the vaccine was inoculated into DF-1 cells for REV isolation and identification. An REV strain, designated IBD-C1605, was identified using an immunofluorescence assay test. Three pairs of primers were employed for the amplification, cloning and sequencing of three overlapping fragments of the IBD-C1605 genome, and the whole-genome sequence of this isolate was obtained after gene assembly. The genome was 8362 base pairs (nt) in length and its homology with the nucleotide sequences of different reference strains varied between 94.2 and 99.2 %. Isolate IBD-C1605 was inoculated into 1-day-old SPF chickens to observe its pathogenicity. Infection with this organism slowed down the weight gain of SPF chickens and caused atrophy of their immune organs, such as the bursa of Fabricius and thymus gland. Furthermore, the chicken antibody levels decreased significantly after Newcastle disease virus and avian influenza virus subtype H9 vaccine immunization. This is the first report on the isolation and identification of REV from attenuated vaccine virus seeds in China, and is also the first study on the pathogenicity of REV from a contaminated vaccine in China. Our findings contribute towards a better understanding of the detrimental effects of vaccine contamination with exogenous viruses such as REV.
-
- Negative-strand RNA Viruses
-
-
Neutralization-based seroprevalence of Toscana virus and sandfly fever Sicilian virus in dogs and cats from Portugal
Sandfly-borne phleboviruses are endemic in the Mediterranean basin. However, levels of exposure of human and animal populations are inadequately researched. Toscana virus (TOSV) is present in Portugal where it causes human infection and disease; in contrast there are few data for sandfly fever Sicilian virus (SFSV) which has neither been isolated nor detected by molecular tests and for which there are only limited serological data. The sera collected from 1160 dogs and 189 cats in southern Portugal were tested for the presence of neutralizing antibodies against TOSV and SFSV, two viruses recognized as distinct serocomplexes in the Mediterranean region. Our data showed (i) seropositivity to TOSV and SFSV in dogs at a rate of 6.8 and 50.8 %, respectively, and (ii) that 3.7 % of cats were seropositive for TOSV. TOSV findings are in line with previous results obtained with less stringent serological assays. Our results for SFSV in dogs clearly indicate that the virus is circulating widely and that humans may be exposed to infection via the dogs. Although the presence of SFSV was suggested by haemagglutination inhibition in 4/1690 human sera in 1974, this is the first time, as far as we know, that SFSV has been shown to circulate so widely in dogs in Portugal. Future studies should be directed at isolating strains of SFSV in Portugal from dogs, humans and sandflies collected in high prevalence regions. As dogs appear to be good sentinels for SFSV, their role as a possible reservoir in the natural cycle should also be considered.
-
-
-
Spring viraemia of carp virus enters grass carp ovary cells via clathrin-mediated endocytosis and macropinocytosis
More LessSpring viraemia of carp virus (SVCV) is the causative pathogen of the outbreaks of an acute haemorrhagic and contagious viraemia responsible for the significant mortality in several cyprinid species. However, the endocytic pathway(s) and their regulatory molecules have not been characterized for SVCV. Here, using a combination of specific pharmacological inhibitors, transmission electron microscopy, immunofluorescence microscopy and real-time quantitative PCR, we found that SVCV entered grass carp ovary cells via clathrin-mediated endocytosis and macropinocytosis in a low-pH-dependent manner. We also discovered that dynamin II, actin microfilaments and microtubules were essential for SVCV internalization. Moreover, we found that the P21-activated kinase 1 inhibitor IPA-3 and the protein kinase C inhibitor rottlerin could block SVCV cell entry and replication, while phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 could promote SVCV infection. Results presented in this study provide helpful insight into revealing the initial steps of SVCV infection, and they may facilitate the development of therapeutic interventions.
-
-
-
Recombinant mumps viruses expressing the batMuV fusion glycoprotein are highly fusion active and neurovirulent
A recent study reported the detection of a bat-derived virus (BatPV/Epo_spe/AR1/DCR/2009, batMuV) with phylogenetic relatedness to human mumps virus (hMuV). Since all efforts to isolate infectious batMuV have reportedly failed, we generated recombinant mumps viruses (rMuVs) in which the open reading frames (ORFs) of the fusion (F) and haemagglutinin-neuraminidase (HN) glycoproteins of an hMuV strain were replaced by the corresponding ORFs of batMuV. The batMuV F and HN proteins were successfully incorporated into viral particles and the resultant chimeric virus was able to mediate infection of Vero cells. Distinct differences were observed between the fusogenicity of rMuVs expressing one or both batMuV glycoproteins: viruses expressing batMuV F were highly fusogenic, regardless of the origin of HN. In contrast, rMuVs expressing human F and bat-derived HN proteins were less fusogenic compared to hMuV. The growth kinetics of chimeric MuVs expressing batMuV HN in combination with either hMuV or batMuV F were similar to that of the backbone virus, whereas a delay in virus replication was obtained for rMuVs harbouring batMuV F and hMuV HN. Replacement of the hMuV F and HN genes or the HN gene alone by the corresponding batMuV genes led to a slight reduction in neurovirulence of the highly neurovirulent backbone strain. Neutralizing antibodies inhibited infection mediated by all recombinant viruses generated. Furthermore, group IV anti-MuV antibodies inhibited the neuraminidase activity of bat-derived HN. Our study reports the successful generation of chimeric MuVs expressing the F and HN proteins of batMuV, providing a means for further examination of this novel batMuV.
-
-
-
Glutamine is required for snakehead fish vesiculovirus propagation via replenishing the tricarboxylic acid cycle
Snakehead fish vesiculovirus (SHVV), a member of the family Rhabdoviridae, has caused mass mortality in snakehead fish culture in China. Previous transcriptomic sequencing of SHVV-infected and non-infected striped snakehead fish cells (SSN-1) showed that glutaminase (GLS), the critical enzyme of glutamine metabolism, was upregulated upon SHVV infection. It therefore drew our attention to investigating the role of glutamine in SHVV propagation. Glutamine deprivation significantly reduced the expression of the mRNAs and proteins of SHVV, and the production of virus particles, indicating that glutamine was required for SHVV propagation. Glutamine can be converted to glutamate by GLS, and then be converted to α-ketoglutarate, to join in the tricarboxylic acid (TCA) cycle. Addition of the TCA cycle intermediate α-ketoglutarate, oxaloacetic acid or pyruvate significantly restored SHVV propagation, indicating that the requirement of glutamine for SHVV propagation was due to its replenishment of the TCA cycle. Inhibiting the activity of GLS in SSN-1 cells by an inhibitor, bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, decreased SHVV propagation, while overexpression of GLS increased SHVV propagation. Taken together, our data have revealed the relationship between glutamine metabolism and SHVV propagation.
-
-
-
Disruption of Src homology 3-binding motif within non-structural protein 1 of influenza B virus unexpectedly enhances viral replication in human cells
More LessThe influenza virus non-structural protein 1 (NS1) is a multifunctional virulence factor that plays a crucial role during infection by blocking the innate antiviral immune response of infected cells. In contrast to the well-studied NS1 protein of influenza A virus, knowledge about structure and functions of the influenza B virus homologue B/NS1, which shares less than 25 % sequence identity, is still limited. Here, we report on a reverse genetic analysis to study the role of a highly conserved class II Src homology 3 domain-binding motif matching the consensus PxxPx(K/R) that we identified at positions 122–127 of the B/NS1 protein. Surprisingly, glycine substitutions in the Src homology 3 domain-binding motif increased virus replication up to three orders of magnitude in human lung cells. Enhanced mutant virus propagation was accompanied by increased gene expression and apoptosis induction linking this motif to the control of programmed cell death. A MS-based interactome study revealed that the glycine substitutions facilitate binding of B/NS1 to heat shock protein 90-beta (HSP90β). Moreover, recruitment of the viral polymerase basic protein 2 to the B/NS1–HSP90β complex was observed. Pharmacological inhibition of HSP90 reduced mutant virus propagation suggesting that the mutation-induced involvement of HSP90β enhanced viral replication. This study not only functionally characterizes a conserved motif within the B/NS1 protein, but also illustrates a rare example in which mutation of a highly conserved sequence within a viral protein does not result in high fitness costs, but rather increases viral replication via recruitment of a host factor.
-
- Positive-strand RNA Viruses
-
-
Hepatitis C virus replicative double-stranded RNA is a potent interferon inducer that triggers interferon production through MDA5
More LessThe cytoplasmic RNA sensors, retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, play crucial roles in innate sensing of hepatitis C virus (HCV). However, the exact identity of the IFN inducer generated during HCV infection is poorly understood. To identify the IFN inducer, we extracted the RNAs from HCV-replicating cells and introduced these into IFN signalling-competent cells to examine IFN production. RNAs isolated from HCV-replicating cells triggered robust IFN-β and IFN-λ production in Huh7 cells in a viral replication-dependent manner, preferentially through the melanoma differentiation-associated gene 5 but not through the retinoic acid-inducible gene I-mediated pathway. The IFN-inducing capacity of HCV RNA survived after calf intestinal alkaline phosphatase and ssRNA-specific S1 nuclease treatment, but was completely eliminated by dsRNA-specific RNase III digestion, suggesting that viral replicative dsRNA is an IFN inducer. Furthermore, HCV viral RNA extracted from replicating cells was sensitive to 5′-monophosphate-dependent 5′→3′ exonuclease (TER) digestion, suggesting that the HCV genome lacks a 5′-triphosphate or -diphosphate. In semi-permeabilized cells, the HCV IFN inducer primarily resided in an enclosed membranous structure that protects the IFN inducer from RNase digestion. Taken together, we identified HCV replicative dsRNA as a viral IFN inducer enclosed within the viral replication factory.
-
-
-
Hepatitis C virus resistance to broadly neutralizing antibodies measured using replication-competent virus and pseudoparticles
More LessA better understanding of natural variation in neutralization resistance and fitness of diverse hepatitis C virus (HCV) envelope (E1E2) variants will be critical to guide rational development of an HCV vaccine. This work has been hindered by inadequate genetic diversity in viral panels and by a lack of standardization of HCV entry assays. Neutralization assays generally use lentiviral pseudoparticles expressing HCV envelope proteins (HCVpp) or chimeric full-length viruses that are replication competent in cell culture (HCVcc). There have been few systematic comparisons of specific infectivities of E1E2-matched HCVcc and HCVpp, and to our knowledge, neutralization of E1E2-matched HCVpp and HCVcc has never been compared using a diverse panel of human broadly neutralizing monoclonal antibodies (bNAbs) targeting distinct epitopes. Here, we describe an efficient method for introduction of naturally occurring E1E2 genes into a full-length HCV genome, producing replication-competent chimeric HCVcc. We generated diverse panels of E1E2-matched HCVcc and HCVpp and measured the entry-mediating fitness of E1E2 variants using the two systems. We also compared neutralization of E1E2-matched HCVcc and HCVpp by a diverse panel of human bNAbs targeting epitopes across E1E2. We found no correlation between specific infectivities of E1E2-matched HCVcc versus HCVpp, but found a very strong positive correlation between relative neutralization resistance of these same E1E2-matched HCVcc and HCVpp variants. These results suggest that quantitative comparisons of neutralization resistance of E1E2 variants can be made with confidence using either HCVcc or HCVpp, allowing the use of either or both systems to maximize diversity of neutralization panels.
-
-
-
Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family
Proposals are described for the assignment of recently reported viruses, infecting rodents, bats and other mammalian species, to new species within the Hepacivirus and Pegivirus genera (family Flaviviridae). Assignments into 14 Hepacivirus species (Hepacivirus A– N) and 11 Pegivirus species (Pegivirus A– K) are based on phylogenetic relationships and sequence distances between conserved regions extracted from complete coding sequences for members of each proposed taxon. We propose that the species H epatitis C virus is renamed Hepacivirus C in order to acknowledge its unique historical position and so as to minimize confusion. Despite the newly documented genetic diversity of hepaciviruses and pegiviruses, members of these genera remain phylogenetically distinct, and differ in hepatotropism and the possession of a basic core protein; pegiviruses in general lack these features. However, other characteristics that were originally used to support their division into separate genera are no longer definitive; there is overlap between the two genera in the type of internal ribosomal entry site and the presence of miR-122 sites in the 5′ UTR, the predicted number of N-linked glycosylation sites in the envelope E1 and E2 proteins, the presence of poly U tracts in the 3′ UTR and the propensity of viruses to establish a persistent infection. While all classified hepaciviruses and pegiviruses have mammalian hosts, the recent description of a hepaci-/pegi-like virus from a shark and the likely existence of further homologues in other non-mammalian species indicate that further species or genera remain to be defined in the future.
-
-
-
Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis
More LessInfection of mice with Sindbis virus (SINV) produces encephalomyelitis and provides a model for examination of the central nervous system (CNS) immune response to alphavirus infection. Clearance of infectious virus is accomplished through a cooperative effort between SINV-specific antibody and IFN-γ, but the regulatory interactions are poorly understood. To determine the effects of IFN-γ on clinical disease and the antiviral immune response, C57BL/6 mice lacking IFN-γ (Ifng−/− ) or IFN-γ receptor (Ifngr1−/− ) were studied in comparison to WT mice. Maximum production of Ifng mRNA and IFN-γ protein in the CNS of WT and Ifngr1−/− mice occurred 5–7 days after infection, with higher levels of IFN-γ in Ifngr1−/− mice. Onset of clinical disease was earlier in mice with impaired IFN-γ signalling, although Ifngr1−/− mice recovered more rapidly. Ifng−/− and Ifngr1−/− mice maintained body weight better than WT mice, associated with better food intake and lower brain levels of inflammatory cytokines. Clearance of infectious virus from the spinal cords was slower, and CNS, but not serum, levels of SINV-specific IgM, IgG2a and IgG2b were lower in Ifngr1−/− and Ifng−/− mice compared to WT mice. Decreased CNS antiviral antibody was associated with lower expression of mRNAs for B-cell attracting chemokines CXCL9, CXCL10 and CXCL13 and fewer B cells in the CNS. Therefore, IFN-γ signalling increases levels of CNS pro-inflammatory cytokines, leading to clinical disease, but synergistically clears virus with SINV-specific antibody at least in part by increasing chemokine production important for infiltration of antibody-secreting B cells into the CNS.
-
- Small DNA Viruses
-
-
Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies
Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60–80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.
-
-
-
BRD4 is associated with raccoon polyomavirus genome and mediates viral gene transcription and maintenance of a stem cell state in neuroglial tumour cells
Polyomavirus infection often results in persistence of the viral genome with little or no virion production. However, infection of certain cell types can result in high viral gene transcription and either cytolysis or neoplastic transformation. While infection by polyomavirus is common in humans and many animals, major questions regarding viral persistence of most polyomaviruses remain unanswered. Specifically, identification of target cells for viral infection and the mechanisms polyomaviruses employ to maintain viral genomes within cells are important not only in ascribing causality to polyomaviruses in disease, but in understanding specific mechanisms by which they cause disease. Here, we characterize the cell of origin in raccoon polyomavirus (RacPyV)-associated neuroglial brain tumours as a neural stem cell. Moreover, we identify an association between the viral genome and the host cell bromodomain protein, BRD4, which is involved in numerous cellular functions, including cell cycle progression, differentiation of stem cells, tethering of persistent DNA viruses, and regulation of viral and host-cell gene transcription. We demonstrate that inhibition of BRD4 by the small molecule inhibitors (+)-JQ1 and IBET-151 (GSK1210151A) results in reduced RacPyV genome within cells in vitro, as well as significant reduction of viral gene transcripts LT and VP1, highlighting its importance in both maintenance of the viral genome and in driving oncogenic transformation by RacPyV. This work implicates BRD4 as a central protein involved in RacPyV neuroglial tumour cell proliferation and in the maintenance of a stem cell state.
-
-
-
Prevalence of human papillomavirus types, viral load and physical status of HPV16 in head and neck squamous cell carcinoma from the South Swedish Health Care Region
More LessIncidence of human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) is rising in several countries. Intriguingly, large variations of HPV16 viral load and different proportions of the physical viral status among HNSCC have been reported. We analysed fresh biopsies of 275 HNSCC patients from the South Swedish Health Care Region for HPV types with modified general primer PCR and Luminex. Seventy-eight HPV16-positive HNSCC cases were further investigated for viral DNA load and physical status using quantitative PCR for HPV E2 and E7 genes. Presence of intact E2 gene, as a surrogate marker for episomal HPV, was investigated with conventional PCR. Fifteen different HPV types were detected in HNSCC cases and HPV16 was present in 74 % of the HPV-positive cases. HPV was detected in 65 % (92/141) and 11 % (15/134) of oropharyngeal and non-oropharyngeal carcinomas, respectively (P<0.0001). HPV was detected in 73 % (75/103) of tonsillar carcinomas. The median load of HPV16 was 13 copies cell−1 (range 0.003–1080). Among HPV16-positive patients with oropharyngeal carcinoma, metastases to regional lymph nodes were observed in 100 % (17/17) and 68 % (40/58) for those with <1 HPV16 copy cell−1 and >1 HPV16 copy cell−1, respectively (P=0.007). Among HPV16 cases, purely integrated HPV16 was found in 6 %, whereas entirely episomal and mixed virus was detected in 51 and 42 % of cases, respectively. Conclusively, HPV16 viral DNA load demonstrated a large diversity among HNSCCs. Although integration of HPV16 is common (48 %), the episomal HPV16 is salient (93 %) among HPV16 HNSCCs. In addition, low amount of HPV16 was associated with lymph node metastases among oropharyngeal carcinomas.
-
- Large DNA Viruses
-
-
A little cooperation helps murine cytomegalovirus (MCMV) go a long way: MCMV co-infection rescues a chemokine salivary gland defect
Cytomegaloviruses (CMVs) produce chemokines (vCXCLs) that have both sequence and functional homology to host chemokines. Assessment of vCXCL-1's role in CMV infection is limited to in vitro and in silico analysis due to CMVs species specificity. In this study, we used the murine CMV (MCMV) mouse model to evaluate the function of vCXCL-1 in vivo. Recombinant MCMVs expressing chimpanzee CMV vCXCL-1 (vCXCL-1CCMV) or host chemokine, mCXCL1, underwent primary dissemination to the popliteal lymph node, spleen and lung similar to the parental MCMV. However, neither of the recombinants expressing chemokines was recovered from the salivary gland (SG) at any time post-infection although viral DNA was detected. This implies that the virus does not grow in the SG or the overexpressed chemokine induces an immune response that leads to suppressed growth. Pointing to immune suppression of virus replication, recombinant viruses were isolated from the SG following infection of immune-ablated mice [i.e. SCID (severe combined immunodeficiency), NSG (non-obese diabetic SCID gamma) or cyclophosphamide treated]. Depletion of neutrophils or NK cells does not rescue the recovery of chemokine-expressing recombinants in the SG. Surprisingly we found that co-infection of parental virus and chemokine-expressing virus leads to the recovery of the recombinants in the SG. We suggest that parental virus reduces the levels of chemokine expression leading to a decrease in inflammatory monocytes and subsequent SG growth. Therefore, aberrant expression of the chemokines induces cells of the innate and adaptive immune system that curtail the growth and dissemination of the recombinants in the SG.
-
-
-
Hyperediting by ADAR1 of a new herpesvirus lncRNA during the lytic phase of the oncogenic Marek’s disease virus
More LessMarek’s disease virus, or Gallid herpesvirus 2 (GaHV-2), is an avian alphaherpesvirus that induces T-cell lymphoma in chickens. During transcriptomic studies of the RL region of the genome, we characterized the 7.5 kbp gene of the ERL lncRNA (edited repeat-long, long non-coding RNA), which may act as a natural antisense transcript (NAT) of the major GaHV-2 oncogene meq and of two of the three miRNA clusters. During infections in vivo and in vitro, we detected hyperediting of the ERL lncRNA that appeared to be directly correlated with ADAR1 expression levels. The ERL lncRNA was expressed equally during the lytic and latent phases of infection and during viral reactivation, but its hyperediting increased only during the lytic infection of chicken embryo fibroblasts. We also showed that chicken ADAR1 expression was controlled by the JAK/STAT IFN-response pathway, through an inducible promoter containing IFN-stimulated response elements that were functional during stimulation with IFN-α or poly(I:C). Like the human and murine miR-155-5p, the chicken gga-miR-155-5p and the GaHV-2 analogue mdv1-miR-M4-5p deregulated this pathway by targeting and repressing expression of suppressor of cytokine signalling 1, leading to the upregulation of ADAR1. Finally, we hypothesized that the natural antisense transcript role of the ERL lncRNA could be disrupted by its hyperediting, particularly during viral lytic replication, and that the observed deregulation of the innate immune system by mdv1-miR-M4-5p might contribute to the viral cycle.
-
-
-
Epstein–Barr virus exploits host endocytic machinery for cell-to-cell viral transmission rather than a virological synapse
More LessEpstein–Barr virus (EBV) establishes a lifelong latent infection in B lymphocytes and often is found in epithelial cells. Several lines of evidence indicate that viral transmission mediated by cell-to-cell contact is the dominant mode of infection by EBV for epithelial cells. However, its detailed molecular mechanism has not been fully elucidated. We investigated the role of host membrane trafficking machinery in this process. We have found that adhesion molecules critical for this process are expressed in EBV-positive and -negative Burkitt’s lymphoma (BL) cells and multiple epithelial cell lines. Treatment with blocking antibodies against β1 and β2 integrin families and their ligands suppressed EBV transmission in a dose-dependent manner. We also confirmed that adhesion molecules are upregulated in co-cultured BL cells. Immunofluorescence staining revealed that the intracellular adhesion molecule 1 (ICAM-1) distributed to the cell surface and partially co-localized with recycling endosomes in co-cultured BL cells. Moreover, cell-to-cell EBV transmission was inhibited upon blocking endocytic recycling by expression of a dominant-negative form of a small GTPase Rab11 or by knockdown of Rab11, supporting the notion that the endocytic pathway-dependent trafficking of ICAM-1 to the cell surface of BL cells contributes to viral transmission by stabilizing cell-to-cell contact between the donor cells and recipient cells. Finally, we demonstrated that co-cultivation upregulated clathrin-mediated endocytosis in the recipient cells, allowing EBV to be internalized. Taken together, our findings demonstrate that EBV exploits host endocytic machinery in both donor and recipient cells, a process which is facilitated by cell-to-cell contact, thereby promoting successful viral transmission.
-
-
-
Herpes simplex virus particles interact with chemokines and enhance cell migration
More LessHerpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively) are among the most prevalent human pathogens, causing a variety of diseases. HSV modulation of the chemokine network remains poorly understood. We have previously identified secreted glycoprotein G (SgG) as the first viral chemokine-binding protein that enhances chemokine function as a novel viral immunomodulatory mechanism. However, gG is also present at the viral envelope and its role in the virus particle remains unknown. Here we have addressed the chemokine-binding capacity of HSV particles and the functionality of such interaction in vitro. We adapted surface plasmon resonance assays and demonstrated the ability of HSV particles to bind a specific set of human chemokines with high affinity. Moreover, we identified gG as the envelope glycoprotein mediating such interaction, as shown by the lack of binding to a HSV-1 gG mutant. In contrast to HSV-1, HSV-2 gG is cleaved and the chemokine-binding domain is secreted (SgG2). However, we found that HSV-2 particles retain the ability to bind chemokines, potentially through SgG2 associated to the viral envelope or non-processed precursor protein. Moreover, we found that HSV particles increase cell migration independently of chemokine binding to envelope gG. This work provides insights into HSV manipulation of the host immune system.
-
- Retroviruses
-
-
A novel simian retrovirus subtype discovered in cynomolgus monkeys (Macaca fascicularis)
A new simian retrovirus (SRV) subtype was discovered in China and the USA from Cambodian-origin cynomolgus monkeys. Histopathological examination from necropsied animals showed multifocal lymphoplasmacystic and histocytic inflammation. The complete genome sequences demonstrated that the US virus isolates were nearly identical (99.91–99.93 %) and differed only slightly (99.13–99.16 % identical) from the China isolate. Phylogenetic analysis showed that the new virus isolates formed a distinct branch of SRV-1 through -7, and therefore were named this subtype, SRV-8. This SRV-8 variant was also phylogenetically and serologically more closely related to SRV-4 than any other SRV subtype.
-
- Insect
-
- RNA Viruses
-
-
Wolbachia restricts insect-specific flavivirus infection in Aedes aegypti cells
More LessMosquito-borne viruses are known to cause disease in humans and livestock and are often difficult to control due to the lack of specific antivirals and vaccines. The Wolbachia endosymbiont has been widely studied for its ability to restrict positive-strand RNA virus infection in mosquitoes, although little is known about the precise antiviral mechanism. In recent years, a variety of insect-specific viruses have been discovered in mosquitoes and an interaction with mosquito-borne viruses has been reported for some of them; however, nothing is known about the effect of Wolbachia on insect-specific virus infection in mosquitoes. Here, we show that transinfection of the Drosophila-derived wMelPop Wolbachia strain into Aedes aegypti-derived cells resulted in inhibition and even clearance of the persistent cell-fusing agent flavivirus infection in these cells. This broadens the antiviral activity of Wolbachia from acute infections to persistent infections and from arboviruses to mosquito-specific viruses. In contrast, no effect on the Phasi Charoen-like bunyavirus persistent infection in these cells was observed, suggesting a difference in Wolbachia inhibition between positive- and negative-strand RNA viruses.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)