1887

Abstract

Epstein–Barr virus (EBV) establishes a lifelong latent infection in B lymphocytes and often is found in epithelial cells. Several lines of evidence indicate that viral transmission mediated by cell-to-cell contact is the dominant mode of infection by EBV for epithelial cells. However, its detailed molecular mechanism has not been fully elucidated. We investigated the role of host membrane trafficking machinery in this process. We have found that adhesion molecules critical for this process are expressed in EBV-positive and -negative Burkitt’s lymphoma (BL) cells and multiple epithelial cell lines. Treatment with blocking antibodies against β1 and β2 integrin families and their ligands suppressed EBV transmission in a dose-dependent manner. We also confirmed that adhesion molecules are upregulated in co-cultured BL cells. Immunofluorescence staining revealed that the intracellular adhesion molecule 1 (ICAM-1) distributed to the cell surface and partially co-localized with recycling endosomes in co-cultured BL cells. Moreover, cell-to-cell EBV transmission was inhibited upon blocking endocytic recycling by expression of a dominant-negative form of a small GTPase Rab11 or by knockdown of Rab11, supporting the notion that the endocytic pathway-dependent trafficking of ICAM-1 to the cell surface of BL cells contributes to viral transmission by stabilizing cell-to-cell contact between the donor cells and recipient cells. Finally, we demonstrated that co-cultivation upregulated clathrin-mediated endocytosis in the recipient cells, allowing EBV to be internalized. Taken together, our findings demonstrate that EBV exploits host endocytic machinery in both donor and recipient cells, a process which is facilitated by cell-to-cell contact, thereby promoting successful viral transmission.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000605
2016-11-10
2019-12-10
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/2989.html?itemId=/content/journal/jgv/10.1099/jgv.0.000605&mimeType=html&fmt=ahah

References

  1. Agosto L. M., Uchil P. D., Mothes W.. 2015; HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy. Trends Microbiol23:289–295[CrossRef]
    [Google Scholar]
  2. Barranco S. C., Townsend C. M., Casartelli C., Macik B. G., Burger N. L., Boerwinkle W. R., Gourley W. K.. 1983; Establishment and characterization of an in vitro model system for human adenocarcinoma of the stomach. Cancer Res43:1703–1709[PubMed]
    [Google Scholar]
  3. Biswas D. K., Averboukh L., Sheng S., Martin K., Ewaniuk D. S., Jawde T. F., Wang F., Pardee A. B.. 1998; Classification of breast cancer cells on the basis of a functional assay for estrogen receptor. Mol Med4:454–467
    [Google Scholar]
  4. Bosch B., Grigorov B., Senserrich J., Clotet B., Darlix J. L., Muriaux D., Este J. A.. 2008; A clathrin–dynamin-dependent endocytic pathway for the uptake of HIV-1 by direct T cell–T cell transmission. Antiviral Res80:185–193[CrossRef]
    [Google Scholar]
  5. Chang Y., Tung C. H., Huang Y. T., Lu J., Chen J. Y., Tsai C. H.. 1999; Requirement for cell-to-cell contact in Epstein–Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol73:8857–8866
    [Google Scholar]
  6. Chen W., Feng Y., Chen D., Wandinger-Ness A.. 1998; Rab11 is required for trans-Golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell9:3241–3257[CrossRef]
    [Google Scholar]
  7. Chesnokova L. S., Hutt-Fletcher L. M.. 2011; Fusion of Epstein–Barr virus with epithelial cells can be triggered by αvβ5 in addition to αvβ6 and αvβ8, and integrin binding triggers a conformational change in glycoproteins gHgL. J Virol85:13214–13223[CrossRef]
    [Google Scholar]
  8. Couet J., Belanger M. M., Roussel E., Drolet M. C.. 2001; Cell biology of caveolae and caveolin. Adv Drug Deliv Rev49:223–235[CrossRef]
    [Google Scholar]
  9. Dale B. M., McNerney G. P., Thompson D. L., Hubner W., de Los Reyes K., Chuang F. Y., Huser T., Chen B. K.. 2011; Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe10:551–562[CrossRef]
    [Google Scholar]
  10. Desclozeaux M., Venturato J., Wylie F. G., Kay J. G., Joseph S. R., Le H. T., Stow J. L.. 2008; Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Physiol Cell Physiol295:C545–C556[CrossRef]
    [Google Scholar]
  11. Desmyter J., Melnick J. L., Rawls W. E.. 1968; Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). J Virol2:955–961
    [Google Scholar]
  12. Diestel S., Schaefer D., Cremer H., Schmitz B.. 2007; NCAM is ubiquitylated, endocytosed and recycled in neurons. J Cell Sci120:4035–4049[CrossRef]
    [Google Scholar]
  13. Echevarria T. J., Chow S., Watson S., Wakefield D., Di Girolamo N.. 2011; Vitronectin: a matrix support factor for human limbal epithelial progenitor cells. Invest Ophthalmol Vis Sci52:8138–8147[CrossRef]
    [Google Scholar]
  14. Fingeroth J. D., Diamond M. E., Sage D. R., Hayman J., Yates J. L.. 1999; CD21-dependent infection of an epithelial cell line, 293, by Epstein–Barr virus. J Virol73:2115–2125[PubMed]
    [Google Scholar]
  15. Gilbert C., Cantin R., Barat C., Tremblay M. J.. 2007; Human immunodeficiency virus type 1 replication in dendritic cell-T-cell cocultures is increased upon incorporation of host LFA-1 due to higher levels of virus production in immature dendritic cells. J Virol81:7672–7682[CrossRef]
    [Google Scholar]
  16. Gromov P. S., Celis J. E., Hansen C., Tommerup N., Gromova I., Madsen P.. 1998; Human rab11a: transcription, chromosome mapping and effect on the expression levels of host GTP-binding proteins. FEBS Lett429:359–364[CrossRef]
    [Google Scholar]
  17. Groot F., Kuijpers T. W., Berkhout B., de Jong E. C.. 2006; Dendritic cell-mediated HIV-1 transmission to T cells of LAD-1 patients is impaired due to the defect in LFA-1. Retrovirology3:75 [CrossRef][PubMed]
    [Google Scholar]
  18. Gummuluru S., KewalRamani V. N., Emerman M.. 2002; Dendritic cell-mediated viral transfer to T cells is required for human immunodeficiency virus type 1 persistence in the face of rapid cell turnover. J Virol76:10692–10701[CrossRef]
    [Google Scholar]
  19. Haan K. M., Lee S. K., Longnecker R.. 2001; Different functional domains in the cytoplasmic tail of glycoprotein B are involved in Epstein–Barr virus–induced membrane fusion. Virology290:106–114[CrossRef]
    [Google Scholar]
  20. Hioe C. E., Chien P. C., Lu C., Springer T. A., Wang X. H., Bandres J., Tuen M.. 2001; LFA-1 expression on target cells promotes human immunodeficiency virus type 1 infection and transmission. J Virol75:1077–1082 [CrossRef][PubMed]
    [Google Scholar]
  21. Hirano A., Yanai H., Shimizu N., Okamoto T., Matsubara Y., Yamamoto K., Okita K.. 2003; Evaluation of Epstein–Barr virus DNA load in gastric mucosa with chronic atrophic gastritis using a real-time quantitative PCR assay. Int J Gastrointest Cancer34:87–94[CrossRef]
    [Google Scholar]
  22. Huang X., Wu J., Spong S., Sheppard D.. 1998; The integrin αvβ6 is critical for keratinocyte migration on both its known ligand, fibronectin, and on vitronectin. J Cell Sci111:2189–2195
    [Google Scholar]
  23. Hudnall S. D., Ge Y., Wei L., Yang N. P., Wang H. Q., Chen T.. 2005; Distribution and phenotype of Epstein–Barr virus-infected cells in human pharyngeal tonsils. Mod Pathol18:519–527[CrossRef]
    [Google Scholar]
  24. Iizasa H., Nanbo A., Nishikawa J., Jinushi M., Yoshiyama H.. 2012; Epstein–Barr Virus (EBV)-associated gastric carcinoma. Viruses4:3420–3439[CrossRef]
    [Google Scholar]
  25. Imai S., Nishikawa J., Takada K.. 1998; Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells. J Virol72:4371–4378
    [Google Scholar]
  26. Johannsen E., Luftig M., Chase M. R., Weicksel S., Cahir-McFarland E., Illanes D., Sarracino D., Kieff E.. 2004; Proteins of purified Epstein–Barr virus. Proc Natl Acad Sci U S A101:16286–16291[CrossRef]
    [Google Scholar]
  27. Jolly C., Sattentau Q. J.. 2004; Retroviral spread by induction of virological synapses. Traffic5:643–650[CrossRef]
    [Google Scholar]
  28. Jolly C., Kashefi K., Hollinshead M., Sattentau Q. J.. 2004; HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med199:283–293[CrossRef]
    [Google Scholar]
  29. Jolly C., Mitar I., Sattentau Q. J.. 2007; Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J Virol81:13916–13921[CrossRef]
    [Google Scholar]
  30. Kelly E. E., Horgan C. P., McCaffrey M. W.. 2012; Rab11 proteins in health and disease. Biochem Soc Trans40:1360–1367[CrossRef]
    [Google Scholar]
  31. Kenney S. C.. 2007; Reactivation and lytic replication of EBV. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis Edited by Arvin A., Campadelli-Fiume G., Mocarski E., Moore P. S., Roizman B., Whitley R., Yamanishi K.. Cambridge: Cambridge University Press;
    [Google Scholar]
  32. Kerr M. C., Lindsay M. R., Luetterforst R., Hamilton N., Simpson F., Parton R. G., Gleeson P. A., Teasdale R. D.. 2006; Visualisation of macropinosome maturation by the recruitment of sorting nexins. J Cell Sci119:3967–3980[CrossRef]
    [Google Scholar]
  33. Kieff E., Rickinson A. B.. 2001; Epstein–Barr virus and its replication. In Fields Virology, 4th edn. , pp.2511–2573 Edited by Knipe M., Howley P. M.. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  34. Lefevre S., Knedla A., Tennie C., Kampmann A., Wunrau C., Dinser R., Korb A., Schnaker E. M., Tarner I. H. et al. 2009; Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med15:1414–1420[CrossRef]
    [Google Scholar]
  35. Li Q., Spriggs M. K., Kovats S., Turk S. M., Comeau M. R., Nepom B., Hutt-Fletcher L. M.. 1997; Epstein–Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol71:4657–4662
    [Google Scholar]
  36. Lock J. G., Stow J. L.. 2005; Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol Biol Cell16:1744–1755[CrossRef]
    [Google Scholar]
  37. Mamdouh Z., Chen X., Pierini L. M., Maxfield F. R., Muller W. A.. 2003; Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature421:748–753[CrossRef]
    [Google Scholar]
  38. Manninen A., Verkade P., Le Lay S., Torkko J., Kasper M., Fullekrug J., Simons K.. 2005; Caveolin-1 is not essential for biosynthetic apical membrane transport. Mol Cell Biol25:10087–10096[CrossRef]
    [Google Scholar]
  39. Martínez-Viñambres E., García-Trujillo J. A., Rodríguez-Martín E., Villar L. M., Coll J., Roldán E.. 2012; CD29 expressed on plasma cells is activated by divalent cations and soluble CD106 contained in the bone marrow plasma: refractory activation is associated with enhanced proliferation and exit of clonal plasma cells to circulation in multiple myeloma patients. Leukemia26:1098–1105 [CrossRef][PubMed]
    [Google Scholar]
  40. Maruo S., Nanbo A., Takada K.. 2001a; Replacement of the Epstein–Barr virus plasmid with the EBER plasmid in Burkitt's lymphoma cells. J Virol75:9977–9982[CrossRef]
    [Google Scholar]
  41. Maruo S., Yang L., Takada K.. 2001b; Roles of Epstein–Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J Gen Virol82:2373–2383[CrossRef]
    [Google Scholar]
  42. McShane M. P., Longnecker R.. 2004; Cell-surface expression of a mutated Epstein–Barr virus glycoprotein B allows fusion independent of other viral proteins. Proc Natl Acad Sci U S A101:17474–17479[CrossRef]
    [Google Scholar]
  43. Molesworth S. J., Lake C. M., Borza C. M., Turk S. M., Hutt-Fletcher L. M.. 2000; Epstein–Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J Virol74:6324–6332[CrossRef]
    [Google Scholar]
  44. Moskowitz H. S., Yokoyama C. T., Ryan T. A.. 2005; Highly cooperative control of endocytosis by clathrin. Mol Biol Cell16:1769–1776[CrossRef]
    [Google Scholar]
  45. Muro S., Gajewski C., Koval M., Muzykantov V. R.. 2005; ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood105:650–658[CrossRef]
    [Google Scholar]
  46. Nagura H.. 1992; Mucosal defense mechanism in health and disease. Role of the mucosal immune system. Acta Pathol Jpn42:387–400
    [Google Scholar]
  47. Nanbo A., Inoue K., Adachi-Takasawa K., Takada K.. 2002; Epstein–Barr virus RNA confers resistance to interferon-α-induced apoptosis in Burkitt's lymphoma. EMBO J21:954–965[CrossRef]
    [Google Scholar]
  48. Nanbo A., Imai M., Watanabe S., Noda T., Takahashi K., Neumann G., Halfmann P., Kawaoka Y.. 2010; Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog6:e1001121[CrossRef]
    [Google Scholar]
  49. Nanbo A., Terada H., Kachi K., Takada K., Matsuda T.. 2012; Roles of cell signaling pathways in cell-to-cell contact-mediated Epstein–Barr virus transmission. J Virol86:9285–9296[CrossRef]
    [Google Scholar]
  50. Nanbo A., Kawanishi E., Yoshida R., Yoshiyama H.. 2013a; Exosomes derived from Epstein–Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol87:10334–10347[CrossRef]
    [Google Scholar]
  51. Nanbo A., Watanabe S., Halfmann P., Kawaoka Y.. 2013b; The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells. Sci Rep3:1206 [CrossRef]
    [Google Scholar]
  52. Nemerow G. R., Mold C., Schwend V. K., Tollefson V., Cooper N. R.. 1987; Identification of gp350 as the viral glycoprotein mediating attachment of Epstein–Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol61:1416–1420
    [Google Scholar]
  53. Newton A. J., Kirchhausen T., Murthy V. N.. 2006; Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci U S A103:17955–17960[CrossRef]
    [Google Scholar]
  54. Oda T., Imai S., Chiba S., Takada K.. 2000; Epstein–Barr virus lacking glycoprotein gp85 cannot infect B cells and epithelial cells. Virology276:52–58[CrossRef]
    [Google Scholar]
  55. Orth J. D., Krueger E. W., Cao H., McNiven M. A.. 2002; The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci U S A99:167–172[CrossRef]
    [Google Scholar]
  56. Pennino D., Eyerich K., Scarponi C., Carbone T., Eyerich S., Nasorri F., Garcovich S., Traidl-Hoffmann C., Albanesi C., Cavani A.. 2010; IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes. J Immunol184:4880–4888[CrossRef]
    [Google Scholar]
  57. Porter J. C., Hogg N.. 1997; Integrin cross talk: activation of lymphocyte function-associated antigen-1 on human T cells alters α4β1- and α5β1-mediated function. J Cell Biol138:1437–1447[CrossRef]
    [Google Scholar]
  58. Puigdomènech I., Massanella M., Cabrera C., Clotet B., Blanco J.. 2009; On the steps of cell-to-cell HIV transmission between CD4 T cells. Retrovirology6:89 [CrossRef][PubMed]
    [Google Scholar]
  59. Ren M., Xu G., Zeng J., De Lemos-Chiarandini C., Adesnik M., Sabatini D. D.. 1998; Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc Natl Acad Sci U S A95:6187–6192[CrossRef]
    [Google Scholar]
  60. Shannon-Lowe C., Rowe M.. 2011; Epstein–Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog7:e1001338[CrossRef]
    [Google Scholar]
  61. Shannon-Lowe C. D., Neuhierl B., Baldwin G., Rickinson A. B., Delecluse H. J.. 2006; Resting B cells as a transfer vehicle for Epstein–Barr virus infection of epithelial cells. Proc Natl Acad Sci U S A103:7065–7070[CrossRef]
    [Google Scholar]
  62. Shimizu N., Tanabe-Tochikura A., Kuroiwa Y., Takada K.. 1994; Isolation of Epstein–Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt's lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J Virol68:6069–6073
    [Google Scholar]
  63. Silvis M. R., Bertrand C. A., Ameen N., Golin-Bisello F., Butterworth M. B., Frizzell R. A., Bradbury N. A.. 2009; Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Mol Biol Cell20:2337–2350[CrossRef]
    [Google Scholar]
  64. Sizhong Z., Xiukung G., Yi Z.. 1983; Cytogenetic studies on an epithelial cell line derived from poorly differentiated nasopharyngeal carcinoma. Int J Cancer31:587–590[CrossRef]
    [Google Scholar]
  65. Speck P., Longnecker R.. 2000; Infection of breast epithelial cells with Epstein–Barr virus via cell-to-cell contact. J Natl Cancer Inst92:1849–1851[CrossRef]
    [Google Scholar]
  66. Takada K.. 1984; Cross-linking of cell surface immunoglobulins induces Epstein–virus in Burkitt lymphoma lines. Int J Cancer33:27–32[CrossRef]
    [Google Scholar]
  67. Takada K., Ono Y.. 1989; Synchronous and sequential activation of latently infected Epstein–Barr virus genomes. J Virol63:445–449
    [Google Scholar]
  68. Takada K., Horinouchi K., Ono Y., Aya T., Osato T., Takahashi M., Hayasaka S.. 1991; An Epstein–Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus Genes5:147–156[CrossRef]
    [Google Scholar]
  69. Takahashi S., Kubo K., Waguri S., Yabashi A., Shin H. W., Katoh Y., Nakayama K.. 2012; Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci125:4049–4057[CrossRef]
    [Google Scholar]
  70. Tanner J., Weis J., Fearon D., Whang Y., Kieff E.. 1987; Epstein–Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell50:203–213[CrossRef]
    [Google Scholar]
  71. Tanner J., Whang Y., Sample J., Sears A., Kieff E.. 1988; Soluble gp350/220 and deletion mutant glycoproteins block Epstein–Barr virus adsorption to lymphocytes. J Virol62:4452–4464
    [Google Scholar]
  72. Tardif M. R., Tremblay M. J.. 2003; Presence of host ICAM-1 in human immunodeficiency virus type 1 virions increases productive infection of CD4 T lymphocytes by favoring cytosolic delivery of viral material. J Virol77:12299–12309[CrossRef]
    [Google Scholar]
  73. Tardif M. R., Tremblay M. J.. 2005; LFA-1 is a key determinant for preferential infection of memory CD4 T cells by human immunodeficiency virus type 1. J Virol79:13714–13724[CrossRef]
    [Google Scholar]
  74. Thorley-Lawson D. A., Geilinger K.. 1980; Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein–Barr virus neutralize infectivity. Proc Natl Acad Sci U S A77:5307–5311[CrossRef]
    [Google Scholar]
  75. Trowsdale J., Ragoussis J., Campbell R. D.. 1991; Map of the human MHC. Immunol Today12:443–446 [CrossRef][PubMed]
    [Google Scholar]
  76. Tugizov S. M., Herrera R., Palefsky J. M.. 2003; Epstein–Barr virus transcytosis through polarized oral epithelial cells. J Virol87:8179–8194[CrossRef]
    [Google Scholar]
  77. Wang J. H., Kwas C., Wu L.. 2009; Intercellular adhesion molecule 1 (ICAM-1), but not ICAM-2 and -3, is important for dendritic cell-mediated human immunodeficiency virus type 1 transmission. J Virol83:4195–4204[CrossRef]
    [Google Scholar]
  78. Welz T., Wellbourne-Wood J., Kerkhoff E.. 2014; Orchestration of cell surface proteins by Rab11. Trends Cell Biol24:407–415[CrossRef]
    [Google Scholar]
  79. Xiao J., Palefsky J. M., Herrera R., Berline J., Tugizov S. M.. 2008; The Epstein–Barr virus BMRF-2 protein facilitates virus attachment to oral epithelial cells. Virology370:430–442[CrossRef]
    [Google Scholar]
  80. Xiao J., Palefsky J. M., Herrera R., Berline J., Tugizov S. M.. 2009; EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells. Virology388:335–343[CrossRef]
    [Google Scholar]
  81. Yoshiyama H., Imai S., Shimizu N., Takada K.. 1997; Epstein– virus infection of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. J Virol71:5688–5691
    [Google Scholar]
  82. Zhong P., Agosto L. M., Munro J. B., Mothes W.. 2013; Cell-to-cell transmission of viruses. Curr Opin Virol3:44–50 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000605
Loading
/content/journal/jgv/10.1099/jgv.0.000605
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error