1887

Abstract

Cytomegaloviruses (CMVs) produce chemokines (vCXCLs) that have both sequence and functional homology to host chemokines. Assessment of vCXCL-1's role in CMV infection is limited to in vitro and in silico analysis due to CMVs species specificity. In this study, we used the murine CMV (MCMV) mouse model to evaluate the function of vCXCL-1 in vivo. Recombinant MCMVs expressing chimpanzee CMV vCXCL-1 (vCXCL-1CCMV) or host chemokine, mCXCL1, underwent primary dissemination to the popliteal lymph node, spleen and lung similar to the parental MCMV. However, neither of the recombinants expressing chemokines was recovered from the salivary gland (SG) at any time post-infection although viral DNA was detected. This implies that the virus does not grow in the SG or the overexpressed chemokine induces an immune response that leads to suppressed growth. Pointing to immune suppression of virus replication, recombinant viruses were isolated from the SG following infection of immune-ablated mice [i.e. SCID (severe combined immunodeficiency), NSG (non-obese diabetic SCID gamma) or cyclophosphamide treated]. Depletion of neutrophils or NK cells does not rescue the recovery of chemokine-expressing recombinants in the SG. Surprisingly we found that co-infection of parental virus and chemokine-expressing virus leads to the recovery of the recombinants in the SG. We suggest that parental virus reduces the levels of chemokine expression leading to a decrease in inflammatory monocytes and subsequent SG growth. Therefore, aberrant expression of the chemokines induces cells of the innate and adaptive immune system that curtail the growth and dissemination of the recombinants in the SG.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000603
2016-11-10
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/2957.html?itemId=/content/journal/jgv/10.1099/jgv.0.000603&mimeType=html&fmt=ahah

References

  1. Adler S. P..( 2005;). Congenital cytomegalovirus screening. . Pediatr Infect Dis J 24: 1105–1106.[PubMed] [CrossRef]
    [Google Scholar]
  2. Arase H., Mocarski E. S., Campbell A. E., Hill A. B., Lanier L. L..( 2002;). Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. . Science 296: 1323–1326. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arvin A. M., Fast P., Myers M., Plotkin S., Rabinovich R..( 2004;). Vaccine development to prevent cytomegalovirus disease: report from the National Vaccine Advisory Committee. . Clin Infect Dis 39: 233–239. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bale J. F., O'Neil M. E..( 1989;). Detection of murine cytomegalovirus DNA in circulating leukocytes harvested during acute infection of mice. . J Virol 63: 2667–2673.[PubMed]
    [Google Scholar]
  5. Bernardini G., Sciumè G., Santoni A..( 2013;). Differential chemotactic receptor requirements for NK cell subset trafficking into bone marrow. . Front Immunol 4: 12. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bittencourt F. M., Wu S. E., Bridges J. P., Miller W. E..( 2014;). The M33 G protein-coupled receptor encoded by murine cytomegalovirus is dispensable for hematogenous dissemination but is required for growth within the salivary gland. . J Virol 88: 11811–11824. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bukowski J. F., Woda B. A., Welsh R. M..( 1984;). Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. . J Virol 52: 119–128.[PubMed]
    [Google Scholar]
  8. Campbell A. E., Cavanaugh V. J., Slater J. S..( 2008;). The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. . Med Microbiol Immunol 197: 205–213. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chan G., Bivins-Smith E. R., Smith M. S., Smith P. M., Yurochko A. D..( 2008a;). Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. . J Immunol 181: 698–711.[CrossRef]
    [Google Scholar]
  10. Chan G., Bivins-Smith E. R., Smith M. S., Yurochko A. D..( 2008b;). Transcriptome analysis of NF-kappaB- and phosphatidylinositol 3-kinase-regulated genes in human cytomegalovirus-infected monocytes. . J Virol 82: 1040–1046.[CrossRef]
    [Google Scholar]
  11. Chan G., Nogalski M. T., Stevenson E. V., Yurochko A. D..( 2012a;). Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes: a strategy for viral dissemination. . J Leukoc Biol 92: 743–752.[CrossRef]
    [Google Scholar]
  12. Chan G., Nogalski M. T., Yurochko A. D..( 2012b;). Human cytomegalovirus stimulates monocyte-to-macrophage differentiation via the temporal regulation of caspase 3. . J Virol 86: 10714–10723.[CrossRef]
    [Google Scholar]
  13. Cheung T. W., Teich S. A..( 1999;). Cytomegalovirus infection in patients with HIV infection. . Mt Sinai J Med 66: 113–124.[PubMed]
    [Google Scholar]
  14. Cicin-Sain L., Podlech J., Messerle M., Reddehase M. J., Koszinowski U. H..( 2005;). Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. . J Virol 79: 9492–9502. [CrossRef] [PubMed]
    [Google Scholar]
  15. Daley-Bauer L. P., Roback L. J., Wynn G. M., Mocarski E. S..( 2014;). Cytomegalovirus hijacks CX3CR1(hi) patrolling monocytes as immune-privileged vehicles for dissemination in mice. . Cell Host Microbe 15: 351–362. [CrossRef] [PubMed]
    [Google Scholar]
  16. Davison A. J., Dolan A., Akter P., Addison C., Dargan D. J., Alcendor D. J., McGeoch D. J., Hayward G. S..( 2003;). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. . J Gen Virol 84: 17–28. [CrossRef] [PubMed]
    [Google Scholar]
  17. Dogra P., Sparer T..( 2014;). What we have learned from animal models of HCMV. . In Human Cytomegaloviruses , pp. 267–288. Edited by Yurochko A. D., Miller W. E.. Clifton, NJ:: Humana Press;.[CrossRef]
    [Google Scholar]
  18. Dolan A., Cunningham C., Hector R. D., Hassan-Walker A. F., Lee L., Addison C., Dargan D. J., McGeoch D. J., Gatherer D. et al.( 2004;). Genetic content of wild-type human cytomegalovirus. . J Gen Virol 85: 1301–1312. [CrossRef] [PubMed]
    [Google Scholar]
  19. Farrell H. E., Davis-Poynter N., Bruce K., Lawler C., Dolken L., Mach M., Stevenson P. G..( 2015;). Lymph node macrophages restrict murine cytomegalovirus dissemination. . J Virol 89: 7147–7158. [CrossRef] [PubMed]
    [Google Scholar]
  20. Fleming P., Davis-Poynter N., Degli-Esposti M., Densley E., Papadimitriou J., Shellam G., Farrell H..( 1999;). The murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity. . J Virol 73: 6800–6809.[PubMed]
    [Google Scholar]
  21. George S., Jauhar A. M., Mackenzie J., Kieβlich S., Aucoin M. G..( 2015;). Temporal characterization of protein production levels from baculovirus vectors coding for GFP and RFP genes under non-conventional promoter control. . Biotechnol Bioeng 112: 1822–1831. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gyorgy A., Vecchio D. D..( 2014;). Limitations and trade-offs in gene expression due to competition for shared cellular resources. . In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA:, pp. 5431–5436. MIT Press;.[CrossRef]
    [Google Scholar]
  23. Heo J., Petheram S., Demmler G., Murph J. R., Adler S. P., Bale J., Sparer T. E..( 2008;). Polymorphisms within human cytomegalovirus chemokine (UL146/UL147) and cytokine receptor genes (UL144) are not predictive of sequelae in congenitally infected children. . Virology 378: 86–96. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hudson J. B..( 1979;). The murine cytomegalovirus as a model for the study of viral pathogenesis and persistent infections. . Arch Virol 62: 1–29. [CrossRef] [PubMed]
    [Google Scholar]
  25. Inngjerdingen M., Damaj B., Maghazachi A. A..( 2001;). Expression and regulation of chemokine receptors in human natural killer cells. . Blood 97: 367–375. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kamimura Y., Lanier L. L..( 2014;). Rapid and sequential quantitation of salivary gland-associated mouse cytomegalovirus in oral lavage. . J Virol Methods 205: 53–56. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kobayashi Y..( 2006;). Neutrophil infiltration and chemokines. . Crit Rev Immunol 26: 307–316.[PubMed] [CrossRef]
    [Google Scholar]
  28. Kuo Y. C., Tan C. C., Ku J. T., Hsu W. C., Su S. C., Lu C. A., Huang L. F..( 2013;). Improving pharmaceutical protein production in Oryza sativa. . Int J Mol Sci 14: 8719–8739. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lagenaur L. A., Manning W. C., Vieira J., Martens C. L., Mocarski E. S..( 1994;). Structure and function of the murine cytomegalovirus sgg1 gene: a determinant of viral growth in salivary gland acinar cells. . J Virol 68: 7717–7727.[PubMed]
    [Google Scholar]
  30. Lee J., Cacalano G., Camerato T., Toy K., Moore M. W., Wood W..( 1995;). Chemokine binding and activities mediated by the mouse IL-8 receptor. . J Immunol 155: 2158–2164.[PubMed]
    [Google Scholar]
  31. Li G. W., Burkhardt D., Gross C., Weissman J. S..( 2014;). Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. . Cell 157: 624–635. [CrossRef] [PubMed]
    [Google Scholar]
  32. Ljungman P..( 1996;). Cytomegalovirus infections in transplant patients. . Scand J Infect Dis Suppl 100: 59–63.[PubMed]
    [Google Scholar]
  33. Lucin P., Pavić I., Polić B., Jonjić S., Koszinowski U. H..( 1992;). Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands. . J Virol 66: 1977–1984.[PubMed]
    [Google Scholar]
  34. Lurain N. S., Fox A. M., Lichy H. M., Bhorade S. M., Ware C. F., Huang D. D., Kwan S. P., Garrity E. R., Chou S..( 2006;). Analysis of the human cytomegalovirus genomic region from UL146 through UL147A reveals sequence hypervariability, genotypic stability, and overlapping transcripts. . Virol J 3: 4. [CrossRef] [PubMed]
    [Google Scholar]
  35. Lüttichau H. R..( 2010;). The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and CXCR2 as an agonist. . J Biol Chem 285: 9137–9146. [CrossRef] [PubMed]
    [Google Scholar]
  36. Manning W. C., Mocarski E. S..( 1988;). Insertional mutagenesis of the murine cytomegalovirus genome: one prominent alpha gene (ie2) is dispensable for growth. . Virology 167: 477–484.[PubMed]
    [Google Scholar]
  37. Manning W. C., Stoddart C. A., Lagenaur L. A., Abenes G. B., Mocarski E. S..( 1992;). Cytomegalovirus determinant of replication in salivary glands. . J Virol 66: 3794–3802.[PubMed]
    [Google Scholar]
  38. Mayo D. R., Armstrong J. A., Ho M..( 1977;). Reactivation of murine cytomegalovirus by cyclophosphamide. . Nature 267: 721–723.[PubMed] [CrossRef]
    [Google Scholar]
  39. McCarthy A. L., Malik Peiris J. S., Taylor C. E., Green M. A., Sviland L., Pearson A. D., Malcolm A. J..( 1992;). Increase in severity of graft versus host disease by cytomegalovirus. . J Clin Pathol 45: 542–544.[PubMed] [CrossRef]
    [Google Scholar]
  40. McSharry B. P., Avdic S., Slobedman B..( 2012;). Human cytomegalovirus encoded homologs of cytokines, chemokines and their receptors: roles in immunomodulation. . Viruses 4: 2448–2470. [CrossRef] [PubMed]
    [Google Scholar]
  41. Mercer J. A., Spector D. H..( 1986;). Pathogenesis of acute murine cytomegalovirus infection in resistant and susceptible strains of mice. . J Virol 57: 497–504.[PubMed]
    [Google Scholar]
  42. Mihara K., Smit M. J., Krajnc-Franken M., Gossen J., Rooseboom M., Dokter W..( 2005;). Human CXCR2 (hCXCR2) takes over functionalities of its murine homolog in hCXCR2 knockin mice. . Eur J Immunol 35: 2573–2582. [CrossRef] [PubMed]
    [Google Scholar]
  43. Miller-Kittrell M., Sparer T. E..( 2009;). Feeling manipulated: cytomegalovirus immune manipulation. . Virol J 6: 4. [CrossRef] [PubMed]
    [Google Scholar]
  44. Miller-Kittrell M., Sai J., Penfold M., Richmond A., Sparer T. E..( 2007;). Functional characterization of chimpanzee cytomegalovirus chemokine, vCXCL-1(CCMV). . Virology 364: 454–465. [CrossRef] [PubMed]
    [Google Scholar]
  45. Mocarski E. S., Shenk T., Griffiths P. D., Pass R. F..( 2013;). Cytomegalovirus. . In Fields Virology, , 6th edn., pp. 1960–2014. Edited by Knipe D. M., Howley P. M.. Philadelphia:: Lippincott-Raven;.
    [Google Scholar]
  46. Nigro G., Adler S. P..( 2011;). Cytomegalovirus infections during pregnancy. . Curr Opin Obstet Gynecol 23: 123–128. [CrossRef] [PubMed]
    [Google Scholar]
  47. Noda S., Aguirre S. A., Bitmansour A., Brown J. M., Sparer T. E., Huang J., Mocarski E. S..( 2006;). Cytomegalovirus MCK-2 controls mobilization and recruitment of myeloid progenitor cells to facilitate dissemination. . Blood 107: 30–38. [CrossRef] [PubMed]
    [Google Scholar]
  48. Penfold M. E., Dairaghi D. J., Duke G. M., Saederup N., Mocarski E. S., Kemble G. W., Schall T. J..( 1999;). Cytomegalovirus encodes a potent alpha chemokine. . Proc Natl Acad Sci U S A 96: 9839–9844.[PubMed] [CrossRef]
    [Google Scholar]
  49. Pepose J. S., Nestor M. S., Holland G. N., Cochran A. J., Foos R. Y..( 1983;). An analysis of retinal cotton-wool spots and cytomegalovirus retinitis in the acquired immunodeficiency syndrome. . Am J Ophthalmol 95: 118–120.[PubMed] [CrossRef]
    [Google Scholar]
  50. Quinnan G. V Jr, Delery M., Rook A. H., Frederick W. R., Epstein J. S., Manischewitz J. F., Jackson L., Ramsey K. M., Mittal K. et al.( 1984;). Comparative virulence and immunogenicity of the Towne strain and a nonattenuated strain of cytomegalovirus. . Ann Intern Med 101: 478–483.[PubMed] [CrossRef]
    [Google Scholar]
  51. Rager-Zisman B., Zuckerman F., Benharroch D., Pecht M., Burstein Y., Trainin N..( 1990;). Therapy of a fatal murine cytomegalovirus infection with thymic humoral factor (THF-gamma 2) treated immune spleen cells. . Clin Exp Immunol 79: 246–252.[PubMed] [CrossRef]
    [Google Scholar]
  52. Reddehase M. J., Mutter W., Münch K., Bühring H. J., Koszinowski U. H..( 1987;). CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. . J Virol 61: 3102–3108.[PubMed]
    [Google Scholar]
  53. Rondelez Y..( 2012;). Competition for catalytic resources alters biological network dynamics. . Phys Rev Lett 108: 018102. [CrossRef] [PubMed]
    [Google Scholar]
  54. Sacher T., Mohr C. A., Weyn A., Schlichting C., Koszinowski U. H., Ruzsics Z..( 2012;). The role of cell types in cytomegalovirus infection in vivo. . Eur J Cell Biol 91: 70–77. [CrossRef] [PubMed]
    [Google Scholar]
  55. Saederup N., Aguirre S. A., Sparer T. E., Bouley D. M., Mocarski E. S..( 2001;). Murine cytomegalovirus CC chemokine homolog MCK-2 (m131-129) is a determinant of dissemination that increases inflammation at initial sites of infection. . J Virol 75: 9966–9976. [CrossRef] [PubMed]
    [Google Scholar]
  56. Saltzman R. L., Quirk M. R., Jordan M. C..( 1988;). Disseminated cytomegalovirus infection. Molecular analysis of virus and leukocyte interactions in viremia. . J Clin Invest 81: 75–81.[CrossRef]
    [Google Scholar]
  57. Selgrade M. K., Nedrud J. G., Collier A. M., Gardner D. E..( 1981;). Effects of cell source, mouse strain, and immunosuppressive treatment on production of virulent and attenuated murine cytomegalovirus. . Infect Immun 33: 840–847.[PubMed]
    [Google Scholar]
  58. Shultz L. D., Lyons B. L., Burzenski L. M., Gott B., Chen X., Chaleff S., Kotb M., Gillies S. D., King M. et al.( 2005;). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. . J Immunol 174: 6477–6489.[PubMed] [CrossRef]
    [Google Scholar]
  59. Smith M. S., Bentz G. L., Alexander J. S., Yurochko A. D..( 2004a;). Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence. . J Virol 78: 4444–4453.[CrossRef]
    [Google Scholar]
  60. Smith M. S., Bentz G. L., Smith P. M., Bivins E. R., Yurochko A. D..( 2004b;). HCMV activates PI(3)K in monocytes and promotes monocyte motility and transendothelial migration in a PI(3)K-dependent manner. . J Leukoc Biol 76: 65–76.[CrossRef]
    [Google Scholar]
  61. Sparer T. E., Gosling J., Schall T. J., Mocarski E. S..( 2004;). Expression of human CXCR2 in murine neutrophils as a model for assessing cytomegalovirus chemokine vCXCL-1 function in vivo. . J Interferon Cytokine Res 24: 611–620.[CrossRef]
    [Google Scholar]
  62. Stacey M. A., Marsden M., Pham N T. A., Clare S., Dolton G., Stack G., Jones E., Klenerman P., Gallimore A. M. et al.( 2014;). Neutrophils recruited by IL-22 in peripheral tissues function as TRAIL-dependent antiviral effectors against MCMV. . Cell Host Microbe 15: 471–483. [CrossRef] [PubMed]
    [Google Scholar]
  63. Stenberg R. M., Fortney J., Barlow S. W., Magrane B. P., Nelson J. A., Ghazal P..( 1990;). Promoter-specific trans activation and repression by human cytomegalovirus immediate-early proteins involves common and unique protein domains. . J Virol 64: 1556–1565.[PubMed]
    [Google Scholar]
  64. Stevenson E. V., Collins-McMillen D., Kim J. H., Cieply S. J., Bentz G. L., Yurochko A. D..( 2014;). HCMV reprogramming of infected monocyte survival and differentiation: a Goldilocks phenomenon. . Viruses 6: 782–807. [CrossRef] [PubMed]
    [Google Scholar]
  65. Stoddart C. A., Cardin R. D., Boname J. M., Manning W. C., Abenes G. B., Mocarski E. S..( 1994;). Peripheral blood mononuclear phagocytes mediate dissemination of murine cytomegalovirus. . J Virol 68: 6243–6253.[PubMed]
    [Google Scholar]
  66. Takata H., Tomiyama H., Fujiwara M., Kobayashi N., Takiguchi M..( 2004;). Cutting edge: expression of chemokine receptor CXCR1 on human effector CD8+ T cells. . J Immunol 173: 2231–2235. [CrossRef] [PubMed]
    [Google Scholar]
  67. Tessmer M. S., Reilly E. C., Brossay L..( 2011;). Salivary gland NK cells are phenotypically and functionally unique. . PLoS Pathog 7: e1001254. [CrossRef] [PubMed]
    [Google Scholar]
  68. van Cleef K. W., Smit M. J., Bruggeman C. A., Vink C..( 2006;). Cytomegalovirus-encoded homologs of G protein-coupled receptors and chemokines. . J Clin Virol 35: 343–348.[CrossRef]
    [Google Scholar]
  69. Van Der Bij W., Torensma R., Van Son W. J., Anema J., Schirm J., Tegzess A. M., The T. H..( 1988a;). Rapid immunodiagnosis of active cytomegalovirus infection by monoclonal antibody staining of blood leucocytes. . J Med Virol 25: 179–188. [CrossRef]
    [Google Scholar]
  70. van der Bij W., van Dijk R. B., van Son W. J., Torensma R., Prenger K. B., Prop J., Tegzess A. M., The T. H..( 1988b;). Antigen test for early diagnosis of active cytomegalovirus infection in heart transplant recipients. . J Heart Transplant 7: 106–109.
    [Google Scholar]
  71. Vaux D. L., Fidler F., Cumming G..( 2012;). Replicates and repeats – what is the difference and is it significant? A brief discussion of statistics and experimental design. . EMBO Rep 13: 291–296. [CrossRef] [PubMed]
    [Google Scholar]
  72. Vaux D. L..( 2014;). Basic statistics in cell biology. . Annu Rev Cell Dev Biol 30: 23–37. [CrossRef] [PubMed]
    [Google Scholar]
  73. Wang J., Li F., Zheng M., Sun R., Wei H., Tian Z..( 2012;). Lung natural killer cells in mice: phenotype and response to respiratory infection. . Immunology 137: 37–47. [CrossRef] [PubMed]
    [Google Scholar]
  74. Weiße A. Y., Oyarzún D. A., Danos V., Swain P. S..( 2015;). Mechanistic links between cellular trade-offs, gene expression, and growth. . Proc Natl Acad Sci U S A 112: E10381047. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000603
Loading
/content/journal/jgv/10.1099/jgv.0.000603
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error