1887

Abstract

Spring viraemia of carp virus (SVCV) is the causative pathogen of the outbreaks of an acute haemorrhagic and contagious viraemia responsible for the significant mortality in several cyprinid species. However, the endocytic pathway(s) and their regulatory molecules have not been characterized for SVCV. Here, using a combination of specific pharmacological inhibitors, transmission electron microscopy, immunofluorescence microscopy and real-time quantitative PCR, we found that SVCV entered grass carp ovary cells via clathrin-mediated endocytosis and macropinocytosis in a low-pH-dependent manner. We also discovered that dynamin II, actin microfilaments and microtubules were essential for SVCV internalization. Moreover, we found that the P21-activated kinase 1 inhibitor IPA-3 and the protein kinase C inhibitor rottlerin could block SVCV cell entry and replication, while phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 could promote SVCV infection. Results presented in this study provide helpful insight into revealing the initial steps of SVCV infection, and they may facilitate the development of therapeutic interventions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000595
2016-11-10
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/2824.html?itemId=/content/journal/jgv/10.1099/jgv.0.000595&mimeType=html&fmt=ahah

References

  1. Ahne W., Bjorklund H. V., Essbauer S., Fijan N., Kurath G., Winton J. R.. 2002; Spring viremia of carp (SVC). Dis Aquat Organ52:261–272 [CrossRef][PubMed]
    [Google Scholar]
  2. Alvarez de la Rosa D., Canessa C. M., Fyfe G. K., Zhang P.. 2000; Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol62:573–594 [CrossRef][PubMed]
    [Google Scholar]
  3. Amstutz B., Gastaldelli M., Kälin S., Imelli N., Boucke K., Wandeler E., Mercer J., Hemmi S., Greber U. F.. 2008; Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J27:956–969 [CrossRef][PubMed]
    [Google Scholar]
  4. Anderson H. A., Chen Y., Norkin L. C.. 1996; Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell7:1825–1834 [CrossRef][PubMed]
    [Google Scholar]
  5. Araki N., Johnson M. T., Swanson J. A.. 1996; A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol135:1249–1260 [CrossRef][PubMed]
    [Google Scholar]
  6. Chou Y. Y., Cuevas C., Carocci M., Stubbs S. H., Ma M., Cureton D. K., Chao L., Evesson F., He K. et al. 2016; Identification and characterization of a novel broad-spectrum virus entry inhibitor. J Virol90:4494–4510 [CrossRef][PubMed]
    [Google Scholar]
  7. Cossart P., Helenius A.. 2014; Endocytosis of viruses and bacteria. Cold Spring Harb Perspect Biol6:a016972 [CrossRef]
    [Google Scholar]
  8. Cureton D. K., Massol R. H., Saffarian S., Kirchhausen T. L., Whelan S. P.. 2009; Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog5:e1000394 [CrossRef][PubMed]
    [Google Scholar]
  9. Dixon P. F., Longshaw C. B.. 2005; Assessment of commercial test kits for identification of spring viraemia of carp virus. Dis Aquat Organ67:25–29 [CrossRef][PubMed]
    [Google Scholar]
  10. Fijan N.. 1999; Spring viremia of carp and other viral diseases and agents of warmwater fish. In Fish Diseases and Disorders , pp.177–244 Edited by Woo P. T. K. a. B., Wallingford D. W.. Oxon, UK: CABI Publishing;
    [Google Scholar]
  11. Han S. C., Guo H. C., Sun S. Q., Jin Y., Wei Y. Q., Feng X., Yao X. P., Cao S. Z., Xiang Liu D. et al. 2016; Productive entry of foot-and-mouth disease virus via macropinocytosis independent of phosphatidylinositol 3-kinase. Sci Rep6:19294 [CrossRef]
    [Google Scholar]
  12. Hernaez B., Alonso C.. 2010; Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J Virol84:2100–2109 [CrossRef][PubMed]
    [Google Scholar]
  13. Huang J., Li F., Wu J., Yang F.. 2015; White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis. Virology486:35–43 [CrossRef][PubMed]
    [Google Scholar]
  14. Huotari J., Helenius A.. 2011; Endosome maturation. EMBO J30:3481–3500 [CrossRef][PubMed]
    [Google Scholar]
  15. Huttunen M., Waris M., Kajander R., Hyypiä T., Marjomäki V.. 2014; Coxsackievirus A9 infects cells via nonacidic multivesicular bodies. J Virol88:5138–5151 [CrossRef][PubMed]
    [Google Scholar]
  16. Koivusalo M., Welch C., Hayashi H., Scott C. C., Kim M., Alexander T., Touret N., Hahn K. M., Grinstein S.. 2010; Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol188:547–563 [CrossRef][PubMed]
    [Google Scholar]
  17. Kwon T., Kwon D. Y., Chun J., Kim J. H., Kang S. S.. 2000; Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J Biol Chem275:423–428 [CrossRef][PubMed]
    [Google Scholar]
  18. Lin H. Y., Yang Y. T., Yu S. L., Hsiao K. N., Liu C. C., Sia C., Chow Y. H.. 2013; Caveolar endocytosis is required for human PSGL-1-mediated enterovirus 71 infection. J Virol87:9064–9076 [CrossRef][PubMed]
    [Google Scholar]
  19. Liu H., Liu Y., Liu S., Pang D. W., Xiao G.. 2011; Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus. J Virol85:6252–6262 [CrossRef][PubMed]
    [Google Scholar]
  20. Macia E., Ehrlich M., Massol R., Boucrot E., Brunner C., Kirchhausen T.. 2006; Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell10:839–850 [CrossRef][PubMed]
    [Google Scholar]
  21. Masereel B., Pochet L., Laeckmann D.. 2003; An overview of inhibitors of Na+/H+ exchanger. Eur J Med Chem38:547–554 [CrossRef][PubMed]
    [Google Scholar]
  22. Mayor S., Pagano R. E.. 2007; Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol8:603–612 [CrossRef][PubMed]
    [Google Scholar]
  23. Mercer J., Helenius A.. 2008; Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science320:531–535 [CrossRef][PubMed]
    [Google Scholar]
  24. Mercer J., Helenius A.. 2009; Virus entry by macropinocytosis. Nat Cell Biol11:510–520 [CrossRef][PubMed]
    [Google Scholar]
  25. Mercer J., Helenius A.. 2012; Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol15:490–499 [CrossRef][PubMed]
    [Google Scholar]
  26. Mercer J., Knebel S., Schmidt F. I., Crouse J., Burkard C., Helenius A.. 2010a; Vaccinia virus strains use distinct forms of macropinocytosis for host-cell entry. Proc Natl Acad Sci USA107:9346–9351 [CrossRef]
    [Google Scholar]
  27. Mercer J., Schelhaas M., Helenius A.. 2010b; Virus entry by endocytosis. Annu Rev Biochem79:803–833 [CrossRef]
    [Google Scholar]
  28. Pelassa I., Zhao C., Pasche M., Odermatt B., Lagnado L.. 2014; Synaptic vesicles are ‘primed’ for fast clathrin-mediated endocytosis at the ribbon synapse. Front Mol Neurosci7:91 [CrossRef][PubMed]
    [Google Scholar]
  29. Piccinotti S., Kirchhausen T., Whelan S. P.. 2013; Uptake of rabies virus into epithelial cells by clathrin-mediated endocytosis depends upon actin. J Virol87:11637–11647 [CrossRef][PubMed]
    [Google Scholar]
  30. Quirin K., Eschli B., Scheu I., Poort L., Kartenbeck J., Helenius A.. 2008; Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology378:21–33 [CrossRef][PubMed]
    [Google Scholar]
  31. Ridley A. J., Paterson H. F., Johnston C. L., Diekmann D., Hall A.. 1992; The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell70:401–410 [CrossRef][PubMed]
    [Google Scholar]
  32. Sandgren K. J., Wilkinson J., Miranda-Saksena M., McInerney G. M., Byth-Wilson K., Robinson P. J., Cunningham A. L.. 2010; A differential role for macropinocytosis in mediating entry of the two forms of vaccinia virus into dendritic cells. PLoS Pathog6:e1000866 [CrossRef][PubMed]
    [Google Scholar]
  33. Schelhaas M.. 2010; Come in and take your coat off – how host cells provide endocytosis for virus entry. Cell Microbiol12:1378–1388 [CrossRef][PubMed]
    [Google Scholar]
  34. Schelhaas M., Shah B., Holzer M., Blattmann P., Kühling L., Day P. M., Schiller J. T., Helenius A.. 2012; Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog8:e1002657 [CrossRef][PubMed]
    [Google Scholar]
  35. Shao L., Xiao Y., He Z., Gao L.. 2016; An N-targeting real-time PCR strategy for the accurate detection of spring viremia of carp virus. J Virol Methods229:27–34 [CrossRef][PubMed]
    [Google Scholar]
  36. Sieczkarski S. B., Whittaker G. R.. 2002; Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol76:10455–10464 [CrossRef][PubMed]
    [Google Scholar]
  37. Vercauteren D., Vandenbroucke R. E., Jones A. T., Rejman J., Demeester J., De Smedt S. C., Sanders N. N., Braeckmans K.. 2010; The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther18:561–569 [CrossRef][PubMed]
    [Google Scholar]
  38. Xiao Y., Shao L., Zhang C., An W.. 2014; Genomic evidence of homologous recombination in spring viremia of carp virus: a negatively single stranded RNA virus. Virus Res189:271–279 [CrossRef]
    [Google Scholar]
  39. Yarar D., Waterman-Storer C. M., Schmid S. L.. 2005; A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell16:964–975 [CrossRef][PubMed]
    [Google Scholar]
  40. Yoshida S., Gaeta I., Pacitto R., Krienke L., Alge O., Gregorka B., Swanson J. A.. 2015; Differential signaling during macropinocytosis in response to M-CSF and PMA in macrophages. Front Physiol6:8 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhu Y. Z., Xu Q. Q., Wu D. G., Ren H., Zhao P., Lao W. G., Wang Y., Tao Q. Y., Qian X. J. et al. 2012; Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway. J Virol86:13407–13422 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000595
Loading
/content/journal/jgv/10.1099/jgv.0.000595
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error