1887

Abstract

Old World monkey TRIM5α strongly suppresses human immunodeficiency virus type 1 (HIV-1) replication. A fusion protein comprising cynomolgus macaque (CM) TRIM5 and cyclophilin A (CM TRIMCyp) also potently suppresses HIV-1 replication. However, CM TRIMCyp fails to suppress a mutant HIV-1 that encodes a mutant capsid protein containing a SIVmac239-derived loop between α-helices 4 and 5 (L4/5). There are seven amino acid differences between L4/5 of HIV-1 and SIVmac239. Here, we investigated the minimum numbers of amino acid substitutions that would allow HIV-1 to evade CM TRIMCyp-mediated suppression. We performed random PCR mutagenesis to construct a library of HIV-1 variants containing mutations in L4/5, and then we recovered replication-competent viruses from CD4 MT4 cells that expressed high levels of CM TRIMCyp. CM TRIMCyp-resistant viruses were obtained after three rounds of selection in MT4 cells expressing CM TRIMCyp and these were found to contain four amino acid substitutions (H87R, A88G, P90D and P93A) in L4/5. We then confirmed that these substitutions were sufficient to confer CM TRIMCyp resistance to HIV-1. In a separate experiment using a similar method, we obtained novel CM TRIM5α-resistant HIV-1 strains after six rounds of selection and rescue. Analysis of these mutants revealed that V86A and G116E mutations in the capsid region conferred partial resistance to CM TRIM5α without substantial fitness cost when propagated in MT4 cells expressing CM TRIM5α. These results confirmed and further extended the previous notion that CM TRIMCyp and CM TRIM5α recognize the HIV-1 capsid in different manners.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000408
2016-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/4/963.html?itemId=/content/journal/jgv/10.1099/jgv.0.000408&mimeType=html&fmt=ahah

References

  1. Akagi T., Ohtsuki Y., Shiraishi Y., Miyoshi I.. ( 1985;). Transformation of human fetal thymus and spleen lymphocytes by human T-cell leukemia virus type I. Acta Med Okayama 39: 155–159 [PubMed].
    [Google Scholar]
  2. Anderson J. L., Campbell E. M., Wu X., Vandegraaff N., Engelman A., Hope T. J.. ( 2006;). Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. J Virol 80: 9754–9760 [CrossRef] [PubMed].
    [Google Scholar]
  3. Braaten D., Franke E. K., Luban J.. ( 1996;). Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. J Virol 70: 4220–4227 [PubMed].
    [Google Scholar]
  4. Chatterji U., Bobardt M. D., Stanfield R., Ptak R. G., Pallansch L. A., Ward P. A., Jones M. J., Stoddart C. A., Scalfaro P., other authors. ( 2005;). Naturally occurring capsid substitutions render HIV-1 cyclophilin A independent in human cells and TRIM-cyclophilin-resistant in owl monkey cells. J Biol Chem 280: 40293–40300 [CrossRef] [PubMed].
    [Google Scholar]
  5. Diaz-Griffero F., Li X., Javanbakht H., Song B., Welikala S., Stremlau M., Sodroski J.. ( 2006;). Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology 349: 300–315 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dull T., Zufferey R., Kelly M., Mandel R. J., Nguyen M., Trono D., Naldini L.. ( 1998;). A third-generation lentivirus vector with a conditional packaging system. J Virol 72: 8463–8471 [PubMed].
    [Google Scholar]
  7. Howard B. R., Vajdos F. F., Li S., Sundquist W. I., Hill C. P.. ( 2003;). Structural insights into the catalytic mechanism of cyclophilin A. Nat Struct Biol 10: 475–481 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kamada K., Igarashi T., Martin M. A., Khamsri B., Hatcho K., Yamashita T., Fujita M., Uchiyama T., Adachi A.. ( 2006;). Generation of HIV-1 derivatives that productively infect macaque monkey lymphoid cells. Proc Natl Acad Sci U S A 103: 16959–16964 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kirmaier A., Wu F., Newman R. M., Hall L. R., Morgan J. S., O'Connor S., Marx P. A., Meythaler M., Goldstein S., other authors. ( 2010;). TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species. PLoS Biol 8: e1000462 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kono K., Song H., Shingai Y., Shioda T., Nakayama E. E.. ( 2008;). Comparison of anti-viral activity of rhesus monkey and cynomolgus monkey TRIM5αs against human immunodeficiency virus type 2 infection. Virology 373: 447–456 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kono K., Song H., Yokoyama M., Sato H., Shioda T., Nakayama E. E.. ( 2010;). Multiple sites in the N-terminal half of simian immunodeficiency virus capsid protein contribute to evasion from rhesus monkey TRIM5α-mediated restriction. Retrovirology 7: 72 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kuroishi A., Saito A., Shingai Y., Shioda T., Nomaguchi M., Adachi A., Akari H., Nakayama E. E.. ( 2009;). Modification of a loop sequence between α-helices 6 and 7 of virus capsid (CA) protein in a human immunodeficiency virus type 1 (HIV-1) derivative that has simian immunodeficiency virus (SIVmac239) vif and CA α-helices 4 and 5 loop improves replication in cynomolgus monkey cells. Retrovirology 6: 70 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kuroishi A., Bozek K., Shioda T., Nakayama E. E.. ( 2010;). A single amino acid substitution of the human immunodeficiency virus type 1 capsid protein affects viral sensitivity to TRIM5α. Retrovirology 7: 58 [CrossRef] [PubMed].
    [Google Scholar]
  14. Li Y., Kar A. K., Sodroski J.. ( 2009;). Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A. J Virol 83: 10951–10962 [CrossRef] [PubMed].
    [Google Scholar]
  15. Miyamoto T., Yokoyama M., Kono K., Shioda T., Sato H., Nakayama E. E.. ( 2011;). A single amino acid of human immunodeficiency virus type 2 capsid protein affects conformation of two external loops and viral sensitivity to TRIM5α. PLoS One 6: e22779 [CrossRef] [PubMed].
    [Google Scholar]
  16. Nakayama E. E., Shioda T.. ( 2010;). Anti-retroviral activity of TRIM5 alpha. Rev Med Virol 20: 77–92 [CrossRef] [PubMed].
    [Google Scholar]
  17. Nakayama E. E., Miyoshi H., Nagai Y., Shioda T.. ( 2005;). A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5α determines species-specific restriction of simian immunodeficiency virus SIVmac infection. J Virol 79: 8870–8877 [CrossRef] [PubMed].
    [Google Scholar]
  18. Neil S. J., Zang T., Bieniasz P. D.. ( 2008;). Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451: 425–430 [CrossRef] [PubMed].
    [Google Scholar]
  19. Nomaguchi M., Yokoyama M., Kono K., Nakayama E. E., Shioda T., Doi N., Fujiwara S., Saito A., Akari H., other authors. ( 2013a;). Generation of rhesus macaque-tropic HIV-1 clones that are resistant to major anti-HIV-1 restriction factors. J Virol 87: 11447–11461 [CrossRef] [PubMed].
    [Google Scholar]
  20. Nomaguchi M., Yokoyama M., Kono K., Nakayama E. E., Shioda T., Saito A., Akari H., Yasutomi Y., Matano T., other authors. ( 2013b;). Gag-CA Q110D mutation elicits TRIM5-independent enhancement of HIV-1mt replication in macaque cells. Microbes Infect 15: 56–65 [CrossRef] [PubMed].
    [Google Scholar]
  21. Nomaguchi M., Nakayama E. E., Yokoyama M., Doi N., Igarashi T., Shioda T., Sato H., Adachi A.. ( 2014;). Distinct combinations of amino acid substitutions in N-terminal domain of Gag-capsid afford HIV-1 resistance to rhesus TRIM5α. Microbes Infect 16: 936–944 [CrossRef] [PubMed].
    [Google Scholar]
  22. Pacheco B., Finzi A., Stremlau M., Sodroski J.. ( 2010;). Adaptation of HIV-1 to cells expressing rhesus monkey TRIM5α. Virology 408: 204–212 [CrossRef] [PubMed].
    [Google Scholar]
  23. Price A. J., Marzetta F., Lammers M., Ylinen L. M., Schaller T., Wilson S. J., Towers G. J., James L. C.. ( 2009;). Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct Mol Biol 16: 1036–1042 [CrossRef] [PubMed].
    [Google Scholar]
  24. Qi M., Yang R., Aiken C.. ( 2008;). Cyclophilin A-dependent restriction of human immunodeficiency virus type 1 capsid mutants for infection of nondividing cells. J Virol 82: 12001–12008 [CrossRef] [PubMed].
    [Google Scholar]
  25. Rasaiyaah J., Tan C. P., Fletcher A. J., Price A. J., Blondeau C., Hilditch L., Jacques D. A., Selwood D. L., James L. C., other authors. ( 2013;). HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503: 402–405 [CrossRef] [PubMed].
    [Google Scholar]
  26. Saito A., Kono K., Nomaguchi M., Yasutomi Y., Adachi A., Shioda T., Akari H., Nakayama E. E.. ( 2012;). Geographical, genetic and functional diversity of antiretroviral host factor TRIMCyp in cynomolgus macaque (Macaca fascicularis). J Gen Virol 93: 594–602 [CrossRef] [PubMed].
    [Google Scholar]
  27. Saito A., Nomaguchi M., Kono K., Iwatani Y., Yokoyama M., Yasutomi Y., Sato H., Shioda T., Sugiura W., other authors. ( 2013;). TRIM5 genotypes in cynomolgus monkeys primarily influence inter-individual diversity in susceptibility to monkey-tropic human immunodeficiency virus type 1. J Gen Virol 94: 1318–1324 [CrossRef] [PubMed].
    [Google Scholar]
  28. Sakuragi J., Ueda S., Iwamoto A., Shioda T.. ( 2003;). Possible role of dimerization in human immunodeficiency virus type 1 genome RNA packaging. J Virol 77: 4060–4069 [CrossRef] [PubMed].
    [Google Scholar]
  29. Schaller T., Ocwieja K. E., Rasaiyaah J., Price A. J., Brady T. L., Roth S. L., Hué S., Fletcher A. J., Lee K., other authors. ( 2011;). HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 7: e1002439 [CrossRef] [PubMed].
    [Google Scholar]
  30. Sheehy A. M., Gaddis N. C., Choi J. D., Malim M. H.. ( 2002;). Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418: 646–650 [CrossRef] [PubMed].
    [Google Scholar]
  31. Soll S. J., Wilson S. J., Kutluay S. B., Hatziioannou T., Bieniasz P. D.. ( 2013;). Assisted evolution enables HIV-1 to overcome a high TRIM5α-imposed genetic barrier to rhesus macaque tropism. PLoS Pathog 9: e1003667 [CrossRef] [PubMed].
    [Google Scholar]
  32. Song H., Nakayama E. E., Yokoyama M., Sato H., Levy J. A., Shioda T.. ( 2007;). A single amino acid of the human immunodeficiency virus type 2 capsid affects its replication in the presence of cynomolgus monkey and human TRIM5αs. J Virol 81: 7280–7285 [CrossRef] [PubMed].
    [Google Scholar]
  33. Stremlau M., Owens C. M., Perron M. J., Kiessling M., Autissier P., Sodroski J.. ( 2004;). The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427: 848–853 [CrossRef] [PubMed].
    [Google Scholar]
  34. Van Damme N., Guatelli J.. ( 2008;). HIV-1 Vpu inhibits accumulation of the envelope glycoprotein within clathrin-coated, Gag-containing endosomes. Cell Microbiol 10: 1040–1057 [CrossRef] [PubMed].
    [Google Scholar]
  35. VandeWoude S., Apetrei C.. ( 2006;). Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 19: 728–762 [CrossRef] [PubMed].
    [Google Scholar]
  36. Veillette M., Bichel K., Pawlica P., Freund S. M., Plourde M. B., Pham Q. T., Reyes-Moreno C., James L. C., Berthoux L.. ( 2013;). The V86M mutation in HIV-1 capsid confers resistance to TRIM5α by abrogation of cyclophilin A-dependent restriction and enhancement of viral nuclear import. Retrovirology 10: 25 [CrossRef] [PubMed].
    [Google Scholar]
  37. Ylinen L. M., Keckesova Z., Wilson S. J., Ranasinghe S., Towers G. J.. ( 2005;). Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5α alleles. J Virol 79: 11580–11587 [CrossRef] [PubMed].
    [Google Scholar]
  38. Yoo S., Myszka D. G., Yeh C., McMurray M., Hill C. P., Sundquist W. I.. ( 1997;). Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J Mol Biol 269: 780–795 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000408
Loading
/content/journal/jgv/10.1099/jgv.0.000408
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error