1887

Abstract

Cyclin-dependent kinases (CDKs) are multifaceted regulators involved in the replication of human cytomegalovirus. Recently, we demonstrated an interaction of CDK9–cyclin T1 as well as viral CDK orthologue pUL97 with the viral regulator pUL69, thereby leading to pUL69-activating phosphorylation. Here, we demonstrate that colocalization and direct pUL69–cyclin T1 interaction is independent of viral strains and host cell types. phosphorylation of pUL69 by CDK9 or pUL97 did not occur in a single site-specific manner, but at multiple sites. The previously described fine-speckled nuclear aggregation of pUL69 was assigned to the late phase of viral replication. CDK inhibitors, including a novel inhibitor of the CDK-activating kinase CDK7, massively intensified this fine-speckled accumulation. Interestingly, we also observed spontaneous pUL69 accumulation in the absence of inhibitors at a lower frequency. These findings provide new insight into pUL69 kinase interregulation and emphasize the importance of pUL69 phosphorylation for correct intranuclear localization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000337
2016-01-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/144.html?itemId=/content/journal/jgv/10.1099/jgv.0.000337&mimeType=html&fmt=ahah

References

  1. Bain M., Sinclair J.. 2007; The S phase of the cell cycle and its perturbation by human cytomegalovirus. Rev Med Virol17:423–434 [CrossRef][PubMed]
    [Google Scholar]
  2. Bregman D. B., Pestell R. G., Kidd V. J.. 2000; Cell cycle regulation and RNA polymerase II. Front Biosci5:D244–D257 [CrossRef][PubMed]
    [Google Scholar]
  3. Chou S.. 2008; Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir. Rev Med Virol18:233–246 [CrossRef][PubMed]
    [Google Scholar]
  4. Chou S., Van Wechel L. C., Marousek G. I.. 2006; Effect of cell culture conditions on the anticytomegalovirus activity of maribavir. Antimicrob Agents Chemother50:2557–2559 [CrossRef][PubMed]
    [Google Scholar]
  5. Cunningham C., Gatherer D., Hilfrich B., Baluchova K., Dargan D. J., Thomson M., Griffiths P. D., Wilkinson G. W., Schulz T. F., Davison A. J.. 2010; Sequences of complete human cytomegalovirus genomes from infected cell cultures and clinical specimens. J Gen Virol91:605–615 [CrossRef][PubMed]
    [Google Scholar]
  6. Feichtinger S., Stamminger T., Müller R., Graf L., Klebl B., Eickhoff J., Marschall M.. 2011; Recruitment of cyclin-dependent kinase 9 to nuclear compartments during cytomegalovirus late replication: importance of an interaction between viral pUL69 and cyclin T1. J Gen Virol92:1519–1531 [CrossRef][PubMed]
    [Google Scholar]
  7. Fortunato E. A., McElroy A. K., Sanchez I., Spector D. H.. 2000; Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol8:111–119 [CrossRef][PubMed]
    [Google Scholar]
  8. Graf L., Webel R., Wagner S., Hamilton S. T., Rawlinson W. D., Sticht H., Marschall M.. 2013; The cyclin-dependent kinase ortholog pUL97 of human cytomegalovirus interacts with cyclins. Viruses5:3213–3230 [CrossRef][PubMed]
    [Google Scholar]
  9. Hamilton S. T., Milbradt J., Marschall M., Rawlinson W. D.. 2014; Human cytomegalovirus replication is strictly inhibited by siRNAs targeting UL54, UL97 or UL122 gene transcripts. PLoS One9:e97231 [CrossRef][PubMed]
    [Google Scholar]
  10. Hamirally S., Kamil J. P., Ndassa-Colday Y. M., Lin A. J., Jahng W. J., Baek M. C., Noton S., Silva L. A., Simpson-Holley M., other authors. 2009; Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog5:e1000275 [CrossRef][PubMed]
    [Google Scholar]
  11. Hertel L., Chou S., Mocarski E. S.. 2007; Viral and cell cycle-regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog3:e6 [CrossRef][PubMed]
    [Google Scholar]
  12. Hume A. J., Finkel J. S., Kamil J. P., Coen D. M., Culbertson M. R., Kalejta R. F.. 2008; Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science320:797–799 [CrossRef][PubMed]
    [Google Scholar]
  13. Hutterer C., Eickhoff J., Milbradt J., Korn K., Zeitträger I., Bahsi H., Wagner S., Zischinsky G., Wolf A., other authors. 2015; A novel CDK7 inhibitor of the pyrazolotriazine class exerts broad-spectrum antiviral activity at nanomolar concentrations. Antimicrob Agents Chemother59:2062–2071 [CrossRef][PubMed]
    [Google Scholar]
  14. Iwahori S., Hakki M., Chou S., Kalejta R. F.. 2015; Molecular determinants for the inactivation of the retinoblastoma tumor suppressor by the viral cyclin-dependent kinase UL97. J Biol Chem290:19666–19680 [CrossRef][PubMed]
    [Google Scholar]
  15. Jault F. M., Jault J. M., Ruchti F., Fortunato E. A., Clark C., Corbeil J., Richman D. D., Spector D. H.. 1995; Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J Virol69:6697–6704[PubMed]
    [Google Scholar]
  16. Kamil J. P., Hume A. J., Jurak I., Münger K., Kalejta R. F., Coen D. M.. 2009; Human papillomavirus 16 E7 inactivator of retinoblastoma family proteins complements human cytomegalovirus lacking UL97 protein kinase. Proc Natl Acad Sci U S A106:16823–16828 [CrossRef][PubMed]
    [Google Scholar]
  17. Kapasi A. J., Spector D. H.. 2008; Inhibition of the cyclin-dependent kinases at the beginning of human cytomegalovirus infection specifically alters the levels and localization of the RNA polymerase II carboxyl-terminal domain kinases cdk9 and cdk7 at the viral transcriptosome. J Virol82:394–407 [CrossRef][PubMed]
    [Google Scholar]
  18. Kapasi A. J., Clark C. L., Tran K., Spector D. H.. 2009; Recruitment of cdk9 to the immediate-early viral transcriptosomes during human cytomegalovirus infection requires efficient binding to cyclin T1, a threshold level of IE2 86, and active transcription. J Virol83:5904–5917 [CrossRef][PubMed]
    [Google Scholar]
  19. Kelso T. W., Baumgart K., Eickhoff J., Albert T., Antrecht C., Lemcke S., Klebl B., Meisterernst M.. 2014; Cyclin-dependent kinase 7 controls mRNA synthesis by affecting stability of preinitiation complexes, leading to altered gene expression, cell cycle progression and survival of tumor cells. Mol Cell Biol34:3675–3688 [CrossRef][PubMed]
    [Google Scholar]
  20. Kuny C. V., Chinchilla K., Culbertson M. R., Kalejta R. F.. 2010; Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases. PLoS Pathog6:e1001092 [CrossRef][PubMed]
    [Google Scholar]
  21. Lischka P., Toth Z., Thomas M., Mueller R., Stamminger T.. 2006; The UL69 transactivator protein of human cytomegalovirus interacts with DEXD/H-Box RNA helicase UAP56 to promote cytoplasmic accumulation of unspliced RNA. Mol Cell Biol26:1631–1643 [CrossRef][PubMed]
    [Google Scholar]
  22. Marschall M., Freitag M., Weiler S., Sorg G., Stamminger T.. 2000; Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob Agents Chemother44:1588–1597 [CrossRef][PubMed]
    [Google Scholar]
  23. Marschall M., Stein-Gerlach M., Freitag M., Kupfer R., van den Bogaard M., Stamminger T.. 2002; Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle for antiviral therapy. J Gen Virol83:1013–1023 [CrossRef][PubMed]
    [Google Scholar]
  24. Marschall M., Feichtinger S., Milbradt J.. 2011; Regulatory roles of protein kinases in cytomegalovirus replication. Adv Virus Res80:69–101 [CrossRef][PubMed]
    [Google Scholar]
  25. Milbradt J., Webel R., Auerochs S., Sticht H., Marschall M.. 2010; Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J Biol Chem285:13979–13989 [CrossRef][PubMed]
    [Google Scholar]
  26. Milbradt J., Kraut A., Hutterer C., Sonntag E., Schmeiser C., Ferro M., Wagner S., Lenac T., Claus C., other authors. 2014; Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus. Mol Cell Proteomics13:2132–2146 [CrossRef][PubMed]
    [Google Scholar]
  27. Mocarski E. S., Shenk T., Griffiths P. D., Pass R. F.. 2013; Cytomegaloviruses. In Fields Virologyvol. 2, 6th edn. pp1960–2014Edited by Knipe D. M., Howley P. M.. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  28. Oberstein A., Perlman D. H., Shenk T., Terry L. J.. 2015; Human cytomegalovirus pUL97 kinase induces global changes in the infected cell phosphoproteome. Proteomics15:2006–2022 [CrossRef][PubMed]
    [Google Scholar]
  29. Rechter S., Scott G. M., Eickhoff J., Zielke K., Auerochs S., Müller R., Stamminger T., Rawlinson W. D., Marschall M.. 2009; Cyclin-dependent kinases phosphorylate the cytomegalovirus RNA export protein pUL69 to modulate its nuclear localization and activity. J Biol Chem284:8605–8613 [CrossRef][PubMed]
    [Google Scholar]
  30. Romaker D., Schregel V., Maurer K., Auerochs S., Marzi A., Sticht H., Marschall M.. 2006; Analysis of the structure–activity relationship of four herpesviral UL97 subfamily protein kinases reveals partial but not full functional conservation. J Med Chem49:7044–7053 [CrossRef][PubMed]
    [Google Scholar]
  31. Sanchez V., Spector D. H.. 2006; Cyclin-dependent kinase activity is required for efficient expression and posttranslational modification of human cytomegalovirus proteins and for production of extracellular particles. J Virol80:5886–5896 [CrossRef][PubMed]
    [Google Scholar]
  32. Sanchez V., McElroy A. K., Yen J., Tamrakar S., Clark C. L., Schwartz R. A., Spector D. H.. 2004; Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122-123 and UL37 immediate-early transcripts and at later times for virus production. J Virol78:11219–11232 [CrossRef][PubMed]
    [Google Scholar]
  33. Schang L. M.. 2004; Effects of pharmacological cyclin-dependent kinase inhibitors on viral transcription and replication. Biochim Biophys Acta1697:197–209 [CrossRef][PubMed]
    [Google Scholar]
  34. Schmeiser C., Borst E., Sticht H., Marschall M., Milbradt J.. 2013; The cytomegalovirus egress proteins pUL50 and pUL53 are translocated to the nuclear envelope through two distinct modes of nuclear import. J Gen Virol94:2056–2069 [CrossRef][PubMed]
    [Google Scholar]
  35. Stanton R. J., Baluchova K., Dargan D. J., Cunningham C., Sheehy O., Seirafian S., McSharry B. P., Neale M. L., Davies J. A., other authors. 2010; Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest120:3191–3208 [CrossRef][PubMed]
    [Google Scholar]
  36. Steingruber M., Socher E., Hutterer C., Webel R., Bergbrede T., Lenac T., Sticht H., Marschall M.. 2015; The interaction between cyclin B1 and cytomegalovirus protein kinase pUL97 is determined by an active kinase domain. Viruses7:4582–4601 [CrossRef][PubMed]
    [Google Scholar]
  37. Tamrakar S., Kapasi A. J., Spector D. H.. 2005; Human cytomegalovirus infection induces specific hyperphosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II that is associated with changes in the abundance, activity, and localization of cdk9 and cdk7. J Virol79:15477–15493 [CrossRef][PubMed]
    [Google Scholar]
  38. Thomas M., Rechter S., Milbradt J., Auerochs S., Müller R., Stamminger T., Marschall M.. 2009; Cytomegaloviral protein kinase pUL97 interacts with the nuclear mRNA export factor pUL69 to modulate its intranuclear localization and activity. J Gen Virol90:567–578 [CrossRef][PubMed]
    [Google Scholar]
  39. Thomas M., Zielke B., Reuter N., Stamminger T.. 2014; Methods to study the nucleocytoplasmic transport of macromolecules with respect to their impact on the regulation of human cytomegalovirus gene expression. Methods Mol Biol1119:197–216 [CrossRef][PubMed]
    [Google Scholar]
  40. Thomas M., Sonntag E., Müller R., Schmidt S., Zielke B., Fossen T., Stamminger T.. 2015; pUL69 of human cytomegalovirus recruits the cellular protein arginine methyltransferase 6 via a domain that is crucial for mRNA export and efficient viral replication. J Virol89:9601–9615 [CrossRef][PubMed]
    [Google Scholar]
  41. Webel R., Hakki M., Prichard M., Rawlinson W. D., Marschall M., Chou S.. 2014; Differential properties of three isoforms of cytomegalovirus pUL97 protein kinase affect viral replication and maribavir susceptibility. J Virol88:4776–4785 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000337
Loading
/content/journal/jgv/10.1099/jgv.0.000337
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error