1887

Abstract

Neutralization of virus infectivity by antibodies is an important component of immunity to several virus infections. Here, the immunochemical basis for the action of neutralizing antibodies, and what role their induction of conformational changes in the antigen might play, is reviewed. Theories of the mechanisms by which antibodies neutralize virus infectivity are also presented. The theoretical and empirical foundation of the hypothesis that viruses are neutralized by a single antibody per virion is critically reviewed. The relationship between antibody occupancy on virions and the mechanism of neutralization is explored. Examples of neutralization mediated through antibody interference with virus attachment and entry are discussed and test implications of refined theories of neutralization by antibody coating of virions are formulated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2091
2002-09-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/9/0832091a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-9-2091&mimeType=html&fmt=ahah

References

  1. Andrewes C. H., Elford W. J. 1933; Observations on anti-phage sera. I. ‘The percentage law’. British Journal of Experimental Pathology 14:367–376
    [Google Scholar]
  2. Armstrong S. J., Dimmock N. J. 1992; Neutralization of influenza virus by low concentrations of hemagglutinin-specific polymeric immunoglobulin A inhibits viral fusion activity, but activation of the ribonucleoprotein is also inhibited. Journal of Virology 66:3823–3832
    [Google Scholar]
  3. Armstrong S. J., Dimmock N. J. 1996; Varying temperature-dependence of post-attachment neutralization of human immunodeficiency virus type 1 by monoclonal antibodies to gp120: identification of a very early fusion-independent event as a neutralization target. Journal of General Virology 77:1397–1402
    [Google Scholar]
  4. Armstrong S. J., McInerney T. L., McLain L., Wahren B., Hinkula J., Levi M., Dimmock N. J. 1996; Two neutralizing anti-V3 monoclonal antibodies act by affecting different functions of human immunodeficiency virus type 1. Journal of General Virology 77:2931–2941
    [Google Scholar]
  5. Bachmann M. F., Kundig T. M., Kalberer C. P., Hengartner H., Zinkernagel R. M. 1994; How many specific B cells are needed to protect against a virus?. Journal of Immunology 152:4235–4241
    [Google Scholar]
  6. Bachmann M. F., Kalinke U., Althage A., Freer G., Burkhart C., Roost H., Aguet M., Hengartner H., Zinkernagel R. M. 1997; The role of antibody concentration and avidity in antiviral protection. Science 276:2024–2027
    [Google Scholar]
  7. Beirnaert E., De Zutter S., Janssens W., van der Groen G. 2001; Potent broad cross-neutralizing sera inhibit attachment of primary HIV-1 isolates (groups m and o) to peripheral blood mononuclear cells. Virology 281:305–314
    [Google Scholar]
  8. Bizebard T., Berbey-Martin C., Fleury D., Gigant B., Barrere B., Skehel J. J., Knossow M. 2001; Structural studies on viral escape from antibody neutralization. Current Topics in Microbiology and Immunology 260:55–64
    [Google Scholar]
  9. Booy F. P., Roden R. B., Greenstone H. L., Schiller J. T., Trus B. L. 1998; Two antibodies that neutralize papillomavirus by different mechanisms show distinct binding patterns at 13 Å resolution. Journal of Molecular Biology 281:95–106
    [Google Scholar]
  10. Brioen P., Rombaut B., Boeye A. 1985a; Hit-and-run neutralization of poliovirus. Journal of General Virology 66:2495–2499
    [Google Scholar]
  11. Brioen P., Thomas A. A., Boeye A. 1985b; Lack of quantitative correlation between the neutralization of poliovirus and the antibody-mediated pI shift of the virions. Journal of General Virology 66:609–613
    [Google Scholar]
  12. Bugge T. H., Lindhardt B. O., Hansen L. L., Kusk P., Hulgaard E., Holmback K., Klasse P. J., Zeuthen J., Ulrich K. 1990; Analysis of a highly immunodominant epitope in the human immunodeficiency virus type 1 transmembrane glycoprotein, gp41, defined by a human monoclonal antibody. Journal of Virology 64:4123–4129
    [Google Scholar]
  13. Burnet F. M., Keogh E. V., Lush D. 1937; The immunological reactions of the filterable viruses. Australian Journal of Experimental Biology and Medical Science 15:227–368
    [Google Scholar]
  14. Burton D. R., Parren P. W. 2000; Vaccines and the induction of functional antibodies: time to look beyond the molecules of natural infection?. Nature Medicine 6:123–125
    [Google Scholar]
  15. Burton D. R., Pyati J., Koduri R., Sharp S. J., Thornton G. B., Parren P. W., Sawyer L. S., Hendry R. M., Dunlop N., Nara P. L. and others 1994; Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:1024–1027
    [Google Scholar]
  16. Burton D. R., Williamson R. A., Parren P. W. 2000; Antibody and virus: binding and neutralization. Virology 270:1–3
    [Google Scholar]
  17. Burton D. R., Saphire E. O., Parren P. W. 2001; A model for neutralization of viruses based on antibody coating of the virion surface. Current Topics in Microbiology and Immunology 260:109–143
    [Google Scholar]
  18. Cavacini L. A., Emes C. L., Power J., Desharnais F. D., Duval M., Montefiori D., Posner M. R. 1995; Influence of heavy chain constant regions on antigen binding and HIV-1 neutralization by a human monoclonal antibody. Journal of Immunology 155:3638–3644
    [Google Scholar]
  19. Chan D. C., Fass D., Berger J. M., Kim P. S. 1997; Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273
    [Google Scholar]
  20. Che Z., Olson N. H., Leippe D., Lee W. M., Mosser A. G., Rueckert R. R., Baker T. S., Smith T. J. 1998; Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryoelectron microscopy and X-ray crystallography of virus–Fab complexes. Journal of Virology 72:4610–4622
    [Google Scholar]
  21. Colonno R. J., Callahan P. L., Leippe D. M., Rueckert R. R., Tomassini J. E. 1989; Inhibition of rhinovirus attachment by neutralizing monoclonal antibodies and their Fab fragments. Journal of Virology 63:36–42
    [Google Scholar]
  22. Della-Porta A. J., Westaway E. G. 1978; A multi-hit model for the neutralization of animal viruses. Journal of General Virology 38:1–19
    [Google Scholar]
  23. Dietzschold B., Tollis M., Lafon M., Wunner W. H., Koprowski H. 1987; Mechanisms of rabies virus neutralization by glycoprotein-specific monoclonal antibodies. Virology 161:29–36
    [Google Scholar]
  24. Dimmock N. J. 1984; Mechanisms of neutralization of animal viruses. Journal of General Virology 65:1015–1022
    [Google Scholar]
  25. Dulbecco R., Vogt M., Strickland A. G. R. 1956; A study of the basic aspects of neutralization. Two animal viruses: Western equine encephalitis virus and poliomyelitis virus. Virology 2:162–205
    [Google Scholar]
  26. Edwards M. J., Dimmock N. J. 2000; Two influenza A virus-specific Fabs neutralize by inhibiting virus attachment to target cells, while neutralization by their IgGs is complex and occurs simultaneously through fusion inhibition and attachment inhibition. Virology 278:423–435
    [Google Scholar]
  27. Edwards M. J., Dimmock N. J. 2001a; Hemagglutinin 1-specific immunoglobulin G and Fab molecules mediate postattachment neutralization of influenza A virus by inhibition of an early fusion event. Journal of Virology 75:10208–10218
    [Google Scholar]
  28. Edwards M. J., Dimmock N. J. 2001b; A haemagglutinin (HA1)-specific Fab neutralizes influenza A virus by inhibiting fusion activity. Journal of General Virology 82:1387–1395
    [Google Scholar]
  29. Emini E. A., Ostapchuk P., Wimmer E. 1983; Bivalent attachment of antibody onto poliovirus leads to conformational alteration and neutralization. Journal of Virology 48:547–550
    [Google Scholar]
  30. Epa V. C., Colman P. M. 2001; Shape and electrostatic complementarity at viral antigen–antibody complexes. Current Topics in Microbiology and Immunology 260:45–53
    [Google Scholar]
  31. Fazekas de St Groth S. 1962; The neutralization of viruses. Advances in Virus Research 9:1–125
    [Google Scholar]
  32. Flamand A., Raux H., Gaudin Y., Ruigrok R. W. 1993; Mechanisms of rabies virus neutralization. Virology 194:302–313
    [Google Scholar]
  33. Fouts T. R., Binley J. M., Trkola A., Robinson J. E., Moore J. P. 1997; Neutralization of the human immunodeficiency virus type 1 primary isolate JR-FL by human monoclonal antibodies correlates with antibody binding to the oligomeric form of the envelope glycoprotein complex. Journal of Virology 71:2779–2785
    [Google Scholar]
  34. Fry E. E., Lea S. M., Jackson T., Newman J. W., Ellard F. M., Blakemore W. E., Abu-Ghazalaleh R., Samuel A., King A. M., Stuart D. I. 1999; The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO Journal 18:543–554
    [Google Scholar]
  35. Gerhard W. 2001; The role of the antibody response in influenza virus infection. Current Topics in Microbiology and Immunology 260:171–190
    [Google Scholar]
  36. Gnann J. W. Jr, Nelson J. A., Oldstone M. B. 1987; Fine mapping of an immunodominant domain in the transmembrane glycoprotein of human immunodeficiency virus. Journal of Virology 61:2639–2641
    [Google Scholar]
  37. Grady L. J., Kinch W. 1985; Two monoclonal antibodies against La Crosse virus show host-dependent neutralizing activity. Journal of General Virology 66:2773–2776
    [Google Scholar]
  38. Greenspan N. S. 2001a; Affinity, complementarity, cooperativity, and specificity in antibody recognition. Current Topics in Microbiology and Immunology 260:65–85
    [Google Scholar]
  39. Greenspan N. S. 2001b; Dimensions of antigen recognition and levels of immunological specificity. Advances in Cancer Research 80:147–187
    [Google Scholar]
  40. Greenspan N. S., Cooper L. J. 1995; Complementarity, specificity and the nature of epitopes and paratopes in multivalent interactions. Immunology Today 16:226–230
    [Google Scholar]
  41. Greenspan N. S., Di Cera E. 1999; Defining epitopes: it’s not as easy as it seems. Nature Biotechnology 17:936–937
    [Google Scholar]
  42. Grewe C., Beck A., Gelderblom H. R. 1990; HIV: early virus–cell interactions. Journal of Acquired Immune Deficiency Syndromes 3:965–974
    [Google Scholar]
  43. Hashimoto N., Prince A. M. 1963; Kinetic studies on the neutralization reaction between Japanese encephalitis virus and antiserum. Virology 19:261–272
    [Google Scholar]
  44. Hewat E. A., Blaas D. 1996; Structure of neutralizing antibody bound bivalently to human rhinovirus 2. EMBO Journal 15:1515–1523
    [Google Scholar]
  45. Hewat E., Blaas D. 2001; Structural studies on antibody interacting with viruses. Current Topics in Microbiology and Immunology 260:29–44
    [Google Scholar]
  46. Hewat E. A., Verdaguer N., Fita I., Blakemore W., Brookes S., King A., Newman J., Domingo E., Mateu M. G., Stuart D. I. 1997; Structure of the complex of a Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO Journal 16:1492–1500
    [Google Scholar]
  47. Hewat E. A., Marlovits T. C., Blaas D. 1998; Structure of a neutralizing antibody bound monovalently to human rhinovirus 2. Journal of Virology 72:4396–4402
    [Google Scholar]
  48. Ho D. D., Sarngadharan M. G., Hirsch M. S., Schooley R. T., Rota T. R., Kennedy R. C., Chanh T. C., Sato V. L. 1987; Human immunodeficiency virus neutralizing antibodies recognize several conserved domains on the envelope glycoproteins. Journal of Virology 61:2024–2028
    [Google Scholar]
  49. Icenogle J., Shiwen H., Duke G., Gilbert S., Rueckert R., Anderegg J. 1983; Neutralization of poliovirus by a monoclonal antibody: kinetics and stoichiometry. Virology 127:412–425
    [Google Scholar]
  50. Jerne N. K., Avegno P. 1956; The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: reversible and irreversible inactivation. Journal of Immunology 76:200–208
    [Google Scholar]
  51. Kabat D., Kozak S. L., Wehrly K., Chesebro B. 1994; Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. Journal of Virology 68:2570–2577
    [Google Scholar]
  52. Kilbourne E. D., Laver W. G., Schulman J. L., Webster R. G. 1968; Antiviral activity of antiserum specific for an influenza virus neuraminidase. Journal of Virology 2:281–288
    [Google Scholar]
  53. Kingsford L., Boucquey K. H., Cardoso T. P. 1991; Effects of specific monoclonal antibodies on La Crosse virus neutralization: aggregation, inactivation by Fab fragments, and inhibition of attachment to baby hamster kidney cells. Virology 180:591–601
    [Google Scholar]
  54. Kjellén L. 1985; A hypothesis accounting for the effect of the host cell on neutralization-resistant virus. Journal of General Virology 66:2279–2283
    [Google Scholar]
  55. Kjellén L., Pereira H. G. 1968; Role of adenovirus antigens in the induction of neutralizing antibody. Journal of General Virology 2:177–185
    [Google Scholar]
  56. Klasse P. J. 1996; Physico-chemical analysis of the humoral immune response to HIV-1: quantification of antibodies, their binding to viral antigens and neutralization of viral infectivity. In HIV Molecular Immunology Database pp 22–52 Edited by Korber B., Walker B., Koup R., Moore J., Haynes B., Myers G. Los Alamos, New Mexico: Los Alamos National Laboratory, Theoretical Biology and Biophysics;
    [Google Scholar]
  57. Klasse P. J., Moore J. P. 1996; Quantitative model of antibody- and soluble CD4-mediated neutralization of primary isolates and T-cell line-adapted strains of human immunodeficiency virus type 1. Journal of Virology 70:3668–3677
    [Google Scholar]
  58. Klasse P. J., Sattentau Q. J. 2001; Mechanisms of virus neutralization by antibodies. Current Topics in Microbiology and Immunology 260:87–108
    [Google Scholar]
  59. Klasse P. J., McKeating J. A., Schutten M., Reitz M. S. Jr, Robert-Guroff M. 1993; An immune-selected point mutation in the transmembrane protein of human immunodeficiency virus type 1 [HXB2-Env: Ala(→Thr)] decreases viral neutralization by monoclonal antibodies to the CD4-binding site. Virology 196:332–337
    [Google Scholar]
  60. Klasse P. J., Bron R., Marsh M. 1998; Mechanisms of enveloped virus entry into animal cells. Advanced Drug Delivery Reviews 34:65–91
    [Google Scholar]
  61. Klein M., Schoppel K., Amvrossiadis N., Mach M. 1999; Strain-specific neutralization of human cytomegalovirus isolates by human sera. Journal of Virology 73:878–886
    [Google Scholar]
  62. Kwong P. D., Wyatt R., Robinson J., Sweet R. W., Sodroski J., Hendrickson W. A. 1998; Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659
    [Google Scholar]
  63. Kwong P. D., Wyatt R., Majeed S., Robinson J., Sweet R. W., Sodroski J., Hendrickson W. A. 2000a; Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure, Folding and Design 8:1329–1339
    [Google Scholar]
  64. Kwong P. D., Wyatt R., Sattentau Q. J., Sodroski J., Hendrickson W. A. 2000b; Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. Journal of Virology 74:1961–1972
    [Google Scholar]
  65. Law M., Smith G. L. 2001; Antibody neutralization of the extracellular enveloped form of vaccinia virus. Virology 280:132–142
    [Google Scholar]
  66. Layne S. P., Merges M. J., Dembo M., Spouge J. L., Nara P. L. 1990; HIV requires multiple gp120 molecules for CD4-mediated infection. Nature 346:277–279
    [Google Scholar]
  67. Layne S. P., Merges M. J., Spouge J. L., Dembo M., Nara P. L. 1991; Blocking of human immunodeficiency virus infection depends on cell density and viral stock age. Journal of Virology 65:3293–3300
    [Google Scholar]
  68. Li Q., Yafal A. G., Lee Y. M., Hogle J., Chow M. 1994; Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results form reversible exposure of these sequences at physiological temperature. Journal of Virology 68:3965–3970
    [Google Scholar]
  69. Li L., Coelingh K. L., Britt W. J. 1995; Human cytomegalovirus neutralizing antibody-resistant phenotype is associated with reduced expression of glycoprotein H. Journal of Virology 69:6047–6053
    [Google Scholar]
  70. Linsley P. S., Ledbetter J. A., Kinney-Thomas E., Hu S. L. 1988; Effects of anti-gp120 monoclonal antibodies on CD4 receptor binding by the Env protein of human immunodeficiency virus type 1. Journal of Virology 62:3695–3702
    [Google Scholar]
  71. Lu S., Putney S. D., Robinson H. L. 1992; Human immunodeficiency virus type 1 entry into T cells: more-rapid escape from an anti-V3 loop than from an antireceptor antibody. Journal of Virology 66:2547–2550
    [Google Scholar]
  72. McDougal J. S., Kennedy M. S., Orloff S. L., Nicholson J. K. A., Spira T. J. 1996; Mechanisms of human immunodeficiency virus type 1 (HIV-1) neutralization: irreversible inactivation of infectivity by anti-HIV-1 antibody. Journal of Virology 69:5236–5245
    [Google Scholar]
  73. McInerney T. L., McLain L., Armstrong S. J., Dimmock N. J. 1997; A human IgG1 (b12) specific for the CD4-binding site of HIV-1 neutralizes by inhibiting the virus fusion entry process, but b12 Fab neutralizes by inhibiting a postfusion event. Virology 233:313–326
    [Google Scholar]
  74. Mandel B. 1976; Neutralization of poliovirus: a hypothesis to explain the mechanism and the one-hit character of the neutralization reaction. Virology 69:500–510
    [Google Scholar]
  75. Mandel B. 1978; Neutralization of animal viruses. Advances in Virus Research 23:205–268
    [Google Scholar]
  76. Massey R. J., Schochetman G. 1981a; Viral epitopes and monoclonal antibodies: isolation of blocking antibodies that inhibit virus neutralization. Science 213:447–449
    [Google Scholar]
  77. Massey R. J., Schochetman G. 1981b; Topographical analysis of viral epitopes using monoclonal antibodies: mechanism of virus neutralization. Virology 115:20–32
    [Google Scholar]
  78. Mazanec M. B., Coudret C. L., Fletcher D. R. 1995; Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. Journal of Virology 69:1339–1343
    [Google Scholar]
  79. Mondor I., Moulard M., Ugolini S., Klasse P. J., Hoxie J., Amara A., Delaunay T., Wyatt R., Sodroski J., Sattentau Q. J. 1998a; Interactions among HIV gp120, CD4, and CXCR4: dependence on CD4 expression level, gp120 viral origin, conservation of the gp120 COOH-and NH2-termini and V1/V2 and V3 loops, and sensitivity to neutralizing antibodies. Virology 248:394–405
    [Google Scholar]
  80. Mondor I., Ugolini S., Sattentau Q. J. 1998b; Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. Journal of Virology 72:3623–3634
    [Google Scholar]
  81. Moore J. P., Ho D. D. 1995; HIV-1 neutralization: the consequences of viral adaptation to growth on transformed T cells. AIDS 9:S117–S136
    [Google Scholar]
  82. Moore J. P., McKeating J. A., Weiss R. A., Sattentau Q. J. 1990; Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250:1139–1142
    [Google Scholar]
  83. Moore J. P., Parren P. W., Burton D. R. 2001; Genetic subtypes, humoral immunity, and human immunodeficiency virus type 1 vaccine development. Journal of Virology 75:5721–5729
    [Google Scholar]
  84. Nowak M. A., Bangham C. R. 1996; Population dynamics of immune responses to persistent viruses. Science 272:74–79
    [Google Scholar]
  85. Orlik O., Ban J., Hlavaty J., Altaner C., Kettmann R., Portetelle D., Splitter G. A. 1997; Polyclonal bovine sera but not virus-neutralizing monoclonal antibodies block bovine leukemia virus (BLV) gp51 binding to recombinant BLV receptor BLVRcp1. Journal of Virology 71:3263–3267
    [Google Scholar]
  86. Parren P. W., Burton D. R. 2001; The antiviral activity of antibodies in vitro and in vivo . Advances in Immunology 77:195–262
    [Google Scholar]
  87. Parry N., Fox G., Rowlands D., Brown F., Fry E., Acharya R., Logan D., Stuart D. 1990; Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature 347:569–572
    [Google Scholar]
  88. Pelchen-Matthews A., Clapham P., Marsh M. 1995; Role of CD4 endocytosis in human immunodeficiency virus infection. Journal of Virology 69:8164–8168
    [Google Scholar]
  89. Phillips A. N. 1996; Reduction of HIV concentration during acute infection: independence from a specific immune response. Science 271:497–499
    [Google Scholar]
  90. Poignard P., Fouts T., Naniche D., Moore J. P., Sattentau Q. J. 1996; Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. Journal of Experimental Medicine 183:473–484
    [Google Scholar]
  91. Possee R. D., Schild G. C., Dimmock N. J. 1982; Studies on the mechanism of neutralization of influenza virus by antibody: evidence that neutralizing antibody (anti-haemagglutinin) inactivates influenza virus in vivo by inhibiting virion transcriptase activity. Journal of General Virology 58:373–386
    [Google Scholar]
  92. Raux H., Coulon P., Lafay F., Flamand A. 1995; Monoclonal antibodies which recognize the acidic configuration of the rabies glycoprotein at the surface of the virion can be neutralizing. Virology 210:400–408
    [Google Scholar]
  93. Rizzuto C. D., Sodroski J. G. 1997; Contribution of virion ICAM-1 to human immunodeficiency virus infectivity and sensitivity to neutralization. Journal of Virology 71:4847–4851
    [Google Scholar]
  94. Roden R. B., Weissinger E. M., Henderson D. W., Booy F., Kirnbauer R., Mushinski J. F., Lowy D. R., Schiller J. T. 1994; Neutralization of bovine papillomavirus by antibodies to L1 and L2 capsid proteins. Journal of Virology 68:7570–7574
    [Google Scholar]
  95. Roivainen M., Piirainen L., Rysa T., Narvanen A., Hovi T. 1993; An immunodominant N-terminal region of VP1 protein of poliovirus that is buried in the crystal structure can be exposed in solution. Virology 195:762–765
    [Google Scholar]
  96. Roost H. P., Bachmann M. F., Haag A., Kalinke U., Pliska V., Hengartner H., Zinkernagel R. M. 1995; Early high-affinity neutralizing anti-viral IgG responses without further overall improvements of affinity. Proceedings of the National Academy of Sciences, USA 92:1257–1261
    [Google Scholar]
  97. Ruggeri F. M., Greenberg H. B. 1991; Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. Journal of Virology 65:2211–2219
    [Google Scholar]
  98. Ruppach H., Nara P., Raudonat I., Elanjikal Z., Rubsamen-Waigmann H., Dietrich U. 2000; Human immunodeficiency virus (HIV)-positive sera obtained shortly after seroconversion neutralize autologous HIV type 1 isolates on primary macrophages but not on lymphocytes. Journal of Virology 74:5403–5411
    [Google Scholar]
  99. Saphire E. O., Parren P. W., Pantophlet R., Zwick M. B., Morris G. M., Rudd P. M., Dwek R. A., Stanfield R. L., Burton D. R., Wilson I. A. 2001; Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293:1155–1159
    [Google Scholar]
  100. Sattentau Q. J., Moore J. P. 1995; Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. Journal of Experimental Medicine 182:185–196
    [Google Scholar]
  101. Sattentau Q. J., Moulard M., Brivet B., Botto F., Guillemot J. C., Mondor I., Poignard P., Ugolini S. 1999; Antibody neutralization of HIV-1 and the potential for vaccine design. Immunology Letters 66:143–149
    [Google Scholar]
  102. Scharf O., Golding H., King L. R., Eller N., Frazier D., Golding B., Scott D. E. 2001; Immunoglobulin G3 from polyclonal human immunodeficiency virus (HIV) immune globulin is more potent than other subclasses in neutralizing HIV type 1. Journal of Virology 75:6558–6565
    [Google Scholar]
  103. Schønning K., Lund O., Lund O. S., Hansen J. E. 1999; Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1. Journal of Virology 73:8364–8370
    [Google Scholar]
  104. Skehel J. J., Wiley D. C. 2000; Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annual Review of Biochemistry 69:531–569
    [Google Scholar]
  105. Smith T. J. 2001; Antibody interactions with rhinovirus: lessons for mechanisms of neutralization and the role of immunity in viral evolution. Current Topics in Microbiology and Immunology 260:1–29
    [Google Scholar]
  106. Smith T. J., Olson N. H., Cheng R. H., Hansong L., Chase E. S., Lee W. M., Leippe D. M., Mosser A. G., Rueckert R. R., Baker T. S. 1993; Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody. Journal of Virology 67:1148–1158
    [Google Scholar]
  107. Smith T. J., Chase E. S., Schmidt T. J., Olson N. H., Baker T. S. 1996; Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature 383:350–354
    [Google Scholar]
  108. Spenlehauer C., Kirn A., Aubertin A. M., Moog C. 2001; Antibody-mediated neutralization of primary human immunodeficiency virus type 1 isolates: investigation of the mechanism of inhibition. Journal of Virology 75:2235–2245
    [Google Scholar]
  109. Stewart P. L., Nemerow G. R. 1997; Recent structural solutions for antibody neutralization of viruses. Trends in Microbiology 5:229–233
    [Google Scholar]
  110. Stewart P. L., Chiu C. Y., Huang S., Muir T., Zhao Y., Chait B., Mathias P., Nemerow G. R. 1997; Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO Journal 16:1189–1198
    [Google Scholar]
  111. Sullivan N. J. 2001; Antibody-mediated enhancement of viral disease. Current Topics in Microbiology and Immunology 260:145–169
    [Google Scholar]
  112. Taylor H. P., Armstrong S. J., Dimmock N. J. 1987; Quantitative relationships between an influenza virus and neutralizing antibody. Virology 159:288–298
    [Google Scholar]
  113. Thali M., Moore J. P., Furman C., Charles M., Ho D. D., Robinson J., Sodroski J. 1993; Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. Journal of Virology 67:3978–3988
    [Google Scholar]
  114. Thali M., MacArthur C., Furman C., Cavacini L., Posner M., Robinson J., Sodroski J. 1994; Resistance to neutralization by broadly reactive antibodies to the human immunodeficiency virus type 1 gp120 glycoprotein conferred by a gp41 amino acid change. Journal of Virology 68:674–680
    [Google Scholar]
  115. Thomas A. A., Vrijsen R., Boeye A. 1986; Relationship between poliovirus neutralization and aggregation. Journal of Virology 59:479–485
    [Google Scholar]
  116. Trkola A., Dragic T., Arthos J., Binley J. M., Olson W. C., Allaway G. P., Cheng-Mayer C., Robinson J., Maddon P. J., Moore J. P. 1996; CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384:184–187
    [Google Scholar]
  117. Ugolini S., Mondor I., Parren P. W., Burton D. R., Tilley S. A., Klasse P. J., Sattentau Q. J. 1997; Inhibition of virus attachment to CD4+ target cells is a major mechanism of T cell line-adapted HIV-1 neutralization. Journal of Experimental Medicine 186:1287–1298
    [Google Scholar]
  118. Ugolini S., Mondor I., Sattentau Q. J. 1999; HIV-1 attachment: another look. Trends in Microbiology 7:144–149
    [Google Scholar]
  119. Verdaguer N., Fita I., Domingo E., Mateu M. G. 1997; Efficient neutralization of foot and mouth virus disease virus by monovalent antibody binding. Journal of Virology 71:9813–9816
    [Google Scholar]
  120. Verdaguer N., Schoehn G., Ochoa W. F., Fita I., Brookes S., King A., Domingo E., Mateu M. G., Stuart D., Hewat E. A. 1999; Flexibility of the major antigenic loop of foot-and-mouth disease virus bound to a Fab fragment of neutralising antibody: structure and neutralisation. Virology 255:260–268
    [Google Scholar]
  121. Verrier F., Nadas A., Gorny M. K., Zolla-Pazner S. 2001; Additive effects characterize the interaction of antibodies involved in neutralization of the primary dualtropic human immunodeficiency virus type 1 isolate 89.6. Journal of Virology 75:9177–9186
    [Google Scholar]
  122. Vrijsen R., Mosser A., Boeye A. 1993; Postabsorption neutralization of poliovirus. Journal of Virology 67:3126–3133
    [Google Scholar]
  123. Vzorov A. N., Compans R. W. 2000; Effect of the cytoplasmic domain of the simian immunodeficiency virus envelope protein on incorporation of heterologous envelope proteins and sensitivity to neutralization. Journal of Virology 74:8219–8225
    [Google Scholar]
  124. Webster R. G., Laver W. G. 1967; Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus. Journal of Immunology 99:49–55
    [Google Scholar]
  125. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. 1997; Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430
    [Google Scholar]
  126. Wetz K. 1993; Attachment of neutralizing antibodies stabilizes the capsid of poliovirus against uncoating. Virology 192:465–472
    [Google Scholar]
  127. Wetz K., Willingmann P., Zeichhardt H., Habermehl K. O. 1986; Neutralization of poliovirus by polyclonal antibodies requires binding of a single IgG molecule per virion. Archives of Virology 91:207–220
    [Google Scholar]
  128. Wilson C., Reitz M. S. Jr, Aldrich K., Klasse P. J., Blomberg J., Gallo R. C., Robert-Guroff M. 1990; The site of an immune-selected point mutation in the transmembrane protein of human immunodeficiency virus type 1 does not constitute the neutralization epitope. Journal of Virology 64:3240–3248
    [Google Scholar]
  129. Wohlfart C. 1988; Neutralization of adenoviruses: kinetics, stoichiometry, and mechanism. Journal of Virology 62:2321–2328
    [Google Scholar]
  130. Wu L., Gerard N. P., Wyatt R., Choe H., Parolin C., Ruffing N., Borsetti A., Cardoso A. A., Desjardin E., Newman W., Gerard C., Sodroski J. 1996; CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384:179–183
    [Google Scholar]
  131. WuDunn D., Spear P. G. 1989; Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. Journal of Virology 63:52–58
    [Google Scholar]
  132. Zebedee S. L., Lamb R. A. 1988; Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. Journal of Virology 62:2762–2772
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-83-9-2091
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2091
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error