1887

Abstract

Herpes simplex virus type 1 (HSV-1)-based amplicon vectors expressing hepatitis C virus (HCV) E1 and E2 glycoproteins were investigated. HSV-1 amplicon vectors carrying the E1E2p7- or E2p7-coding sequences of HCV type 1a under the control of the HSV-1 IE4 (α22/α47) promoter were constructed. Studies of infected HepG2, WRL 68 or Vero cells indicated that HSV-1-based amplicon vectors express high levels of HCV glycoproteins that are processed correctly. Immunofluorescence microscopy combined with immunoprecipitation and endoglycosidase treatment of cells infected with the HSV-1-based vectors expressing E1 and E2 showed that the two glycoproteins were retained in the endoplasmic reticulum and had the expected glycosylation patterns. Furthermore, although most of the E1 and E2 proteins formed disulfide-linked aggregates, significant amounts of monomeric forms of the two proteins were detected by SDS–PAGE under non-reducing conditions, suggesting the presence of non-covalently associated E1 and E2. Similar results were produced by a replication-competent recombinant HSV-1 vector expressing HCV E1 and E2. These results indicated that HSV-1-based amplicon vectors represent a useful expression system for the study of HCV glycoproteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-3-561
2002-03-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/3/0830561a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-3-561&mimeType=html&fmt=ahah

References

  1. Choukhi A., Ung S., Wychowski C., Dubuisson J. 1998; Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. Journal of Virology 72:3851–3858
    [Google Scholar]
  2. Choukhi A., Pillez A., Drobecq H., Sergheraert C., Wychowski C., Dubuisson J. 1999; Characterization of aggregates of hepatitis C virus glycoproteins. Journal of General Virology 80:3099–3107
    [Google Scholar]
  3. Cocquerel L., Meunier J. C., Pillez A., Wychowski C., Dubuisson J. 1998; A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2. Journal of Virology 72:2183–2191
    [Google Scholar]
  4. Cocquerel L., Duvet S., Meunier J. C., Pillez A., Cacan R., Wychowski C., Dubuisson J. 1999; The transmembrane domain of hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. Journal of Virology 73:2641–2649
    [Google Scholar]
  5. Cocquerel L., Wychowski C., Minner F., Penin F., Dubuisson J. 2000; Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a major role in the processing, subcellular localization, and assembly of these envelope proteins. Journal of Virology 74:3623–3633
    [Google Scholar]
  6. Costantini L. C., Jacoby D. R., Wang S., Fraefel C., Breakefield X. O., Isacson O. 1999; Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Human Gene Therapy 10:2481–2494
    [Google Scholar]
  7. Deleersnyder V., Pillez A., Wychowski C., Blight K., Xu J., Hahn Y. S., Rice C. M., Dubuisson J. 1997; Formation of native hepatitis C virus glycoprotein complexes. Journal of Virology 71:697–704
    [Google Scholar]
  8. Dubuisson J. 2000; Folding, assembly and subcellular localization of hepatitis C virus glycoproteins. Current Topics in Microbiology and Immunology 242:135–148
    [Google Scholar]
  9. Dubuisson J., Hsu H. H., Cheung R. C., Greenberg H. B., Russell D. G., Rice C. M. 1994; Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. Journal of Virology 68:6147–6160
    [Google Scholar]
  10. Dubuisson J., Duvet S., Meunier J. C., Op De Beeck A., Cacan R., Wychowski C., Cocquerel L. 2000; Glycosylation of the hepatitis C virus envelope protein E1 is dependent on the presence of a downstream sequence on the viral polyprotein. Journal of Biological Chemistry 275:30605–30609
    [Google Scholar]
  11. Flint M., McKeating J. A. 1999; The C-terminal region of the hepatitis C virus E1 glycoprotein confers localization within the endoplasmic reticulum. Journal of General Virology 80:1943–1947
    [Google Scholar]
  12. Flint M., Dubuisson J., Maidens C., Harrop R., Guile G. R., Borrow P., McKeating J. A. 2000; Functional characterization of intracellular and secreted forms of a truncated hepatitis C virus E2 glycoprotein. Journal of Virology 74:702–709
    [Google Scholar]
  13. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. (editors) 1991; Classification and nomenclature of viruses. Fifth Report of the International Committee on the Taxonomy of Viruses. New York: Springer–Verlag;
    [Google Scholar]
  14. Freese A., Geller A. I., Neve R. 1990; HSV-1 vector mediated neuronal gene delivery. Strategies for molecular neuroscience and neurology. Biochemical Pharmacology 40:2189–2199
    [Google Scholar]
  15. Frenkel N., Singer O., Kwong A. D. 1994; The herpes simplex virus amplicon: a versatile defective virus vector. Gene Therapy 1:S40–S46
    [Google Scholar]
  16. Hoofnagle J. H. 1997; Hepatitis C: the clinical spectrum of disease. Hepatology 26:15S–20S
    [Google Scholar]
  17. Kwong A. D., Frenkel N. 1984; Herpes simplex virus amplicon: effect of size on replication of constructed defective genomes containing eucaryotic DNA sequences. Journal of Virology 51:595–603
    [Google Scholar]
  18. Liberman E., Fong Y. L., Selby M. J., Choo Q. L., Cousens L., Houghton M., Yen T. S. 1999; Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. Journal of Virology 73:3718–3722
    [Google Scholar]
  19. Logvinoff C., Epstein A. L. 2000; Intracellular Cre-mediated deletion of the unique packaging signal carried by a herpes simplex virus type 1 recombinant and its relationship to the cleavage-packaging process. Journal of Virology 74:8402–8412
    [Google Scholar]
  20. Logvinoff C., Epstein A. L. 2001; A novel approach for herpes simplex virus type 1 amplicon vector production, using the Cre-loxP recombination system to remove helper virus. Human Gene Therapy 20:161–167
    [Google Scholar]
  21. Lowenstein P. R., Fournel S., Bain D., Tomasec P., Clissold P., Castro M. G., Epstein A. L. 1994; Herpes simplex virus 1 (HSV-1) helper co-infection affects the distribution of an amplicon encoded protein in glia. Neuroreport 5:1625–1630
    [Google Scholar]
  22. Michalak J. P., Wychowski C., Choukhi A., Meunier J. C., Ung S., Rice C. M., Dubuisson J. 1997; Characterization of truncated forms of hepatitis C virus glycoproteins. Journal of General Virology 78:2299–2306
    [Google Scholar]
  23. Miriagou V., Argnani R., Kakkanas A., Georgopoulou U., Manservigi R., Mavromara P. 1995; Expression of the herpes simplex virus type 1 glycoprotein E in human cells and in Escherichia coli : protection studies against lethal viral infection in mice. Journal of General Virology 76:3137–3143
    [Google Scholar]
  24. Patel J., Patel A. H., McLauchlan J. 1999; Covalent interactions are not required to permit or stabilize the non-covalent association of hepatitis C virus glycoproteins E1 and E2. Journal of General Virology 80:1681–1690
    [Google Scholar]
  25. Patel J., Patel A. H., McLauchlan J. 2001; The transmembrane domain of the hepatitis C virus E2 glycoprotein is required for correct folding of the E1 glycoprotein and native complex formation. Virology 279:58–68
    [Google Scholar]
  26. Post L. E., Roizman B. 1981; A generalized technique for deletion of specific genes in large genomes: α gene 22 of herpes simplex virus 1 is not essential for growth. Cell 25:227–232
    [Google Scholar]
  27. Reed K. E., Rice C. M. 2000; Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Current Topics in Microbiology and Immunology 242:55–84
    [Google Scholar]
  28. Roizman B. 1996; The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proceedings of the National Academy of Sciences, USA 93:11307–11312
    [Google Scholar]
  29. Saeki Y., Fraefel C., Ichikawa T., Breakefield X. O., Chiocca E. A. 2001; Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Molecular Therapy 3:591–601
    [Google Scholar]
  30. Saito I., Miyamura T., Ohbayashi A., Harada H., Katayama T., Kikuchi S., Watanabe Y., Koi S., Onji M., Ohta Y. and others 1990; Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proceedings of the National Academy of Sciences, USA 87:6547–6549
    [Google Scholar]
  31. Savard N., Cosset F. L., Epstein A. L. 1997; Defective herpes simplex virus type 1 vectors harboring gag , pol , and env genes can be used to rescue defective retrovirus vectors. Journal of Virology 71:4111–4117
    [Google Scholar]
  32. Sena-Esteves M., Saeki Y., Camp S. M., Chiocca E. A., Breakefield X. O. 1999; Single-step conversion of cells to retrovirus vector producers with herpes simplex virus–Epstein–Barr virus hybrid amplicons. Journal of Virology 73:10426–10439
    [Google Scholar]
  33. Sena-Esteves M., Saeki Y., Fraefel C., Breakefield X. O. 2000; HSV-1 amplicon vector: simplicity and versatility. Molecular Therapy 2:9–15
    [Google Scholar]
  34. Spaete R. R., Frenkel N. 1982; The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30:295–304
    [Google Scholar]
  35. Spaete R. R., Frenkel N. 1985; The herpes simplex virus amplicon: analyses of cis -acting replication functions. Proceedings of the National Academy of Sciences, USA 82:694–698
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-83-3-561
Loading
/content/journal/jgv/10.1099/0022-1317-83-3-561
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error