1887

Abstract

To identify new T-cell epitopes of classical swine fever virus (CSFV), 573 overlapping, synthetic pentadecapeptides spanning 82% of the CSFV (strain Glentorf) genome sequence were synthesized and screened. In proliferation assays, 26 peptides distributed throughout the CSFV viral protein sequences were able to induce specific T-cell responses in PBMCs from a CSFV-Glentorf-infected d/d haplotype pig. Of these 26 peptides, 18 were also recognized by PBMCs from a CSFV-Alfort/187-infected d/d haplotype pig. In further experiments, it could be shown that peptide 290 (KHKVRNEVMVHWFDD), which corresponds to amino acid residues 1446–1460 of the CSFV non-structural protein NS2–3 could induce interferon-γ secretion after secondary restimulation. The major histocompatibility complex (MHC) restriction for stimulation of T-cells by this pentadecapeptide was identified as being mainly MHC class II and partially MHC class I. In cytolytic assays, CSFV-specific cytotoxic T-lymphocytes (CTLs) were able to lyse peptide 290-loaded target cells. These findings indicate the existence of a CSFV-specific helper T-cell epitope and a CTL epitope in this peptide.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-3-551
2002-03-01
2020-10-31
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/3/0830551a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-3-551&mimeType=html&fmt=ahah

References

  1. An L. L., Whitton J. L.. 1997; A multivalent minigene vaccine, containing B-cell, cytotoxic T-lymphocyte, and Th epitopes from several microbes, induces appropriate responses in vivo and confers protection against more than one pathogen. Journal of Virology71:2292–2302
    [Google Scholar]
  2. Andrew M. E., Morrissy C. J., Lenghaus C., Oke P. G., Sproat K. W., Hodgson A. L., Johnson M. A., Coupar B. E.. 2000; Protection of pigs against classical swine fever with DNA-delivered gp55. Vaccine18:1932–1938
    [Google Scholar]
  3. Aynaud J. M.. 1988; Principles of vaccination. In Classical Swine Fever and Related Viral Infections . pp165–180 Edited by Liess B.. Boston, Massachusetts: Martinus Nijhoff;
  4. Bertoletti A., Chisari F. V., Penna A., Guilhot S., Galati L., Missale G., Fowler P., Schlicht H.-J., Vitiello A., Chesnut R. C., Fiaccadori F., Ferrari C.. 1993; Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis B virus nucleocapsid protein. Journal of Virology67:2376–2380
    [Google Scholar]
  5. Bittle J. L., Houghten R. A., Alexander H., Shinnick T. M., Sutcliffe J. G., Lerner R. A., Rowlands D. J., Brown F.. 1982; Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature298:30–33
    [Google Scholar]
  6. Blanco E., Garcia-Briones M., Sanz-Parra A., Gomes P., De Oliveira E., Valero M. L., Andreu D., Ley V., Sobrino F.. 2001; Identification of T-cell epitopes in nonstructural proteins of foot-and-mouth disease virus. Journal of Virology75:3164–3174
    [Google Scholar]
  7. Borrás-Cuesta F., Petit-Camurdan A., Fedon Y.. 1987; Engineering of immunogenic peptides by co-linear synthesis of determinants recognized by B and T cells. European Journal of Immunology17:1213–1215
    [Google Scholar]
  8. Chicz R. M., Urban R. G., Gorga J. C., Vignali D. A. A., Lane W. S., Strominger J. L.. 1993; Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. Journal of Experimental Medicine178:27–47
    [Google Scholar]
  9. Collen T., DiMarchi R., Doel T. R.. 1991; A T cell epitope in VP1 of foot-and-mouth disease virus is immunodominant for vaccinated cattle. Journal of Immunology146:749–755
    [Google Scholar]
  10. Deres K., Schild H., Wiesmüller K. H., Jung G., Rammensee H. G.. 1989; In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature342:561–564
    [Google Scholar]
  11. DiMarchi R., Brooke G., Gale C., Cracknell V., Doel T., Mowat N.. 1986; Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science232:639–641
    [Google Scholar]
  12. Edwards S., Fukusho A., Lefèvre P. C., Lipowiski A., Pejsak Z., Roehe P., Westergaard J.. 2000; Classical swine fever: the global situation. Veterinary Microbiology73:103–119
    [Google Scholar]
  13. Falk K., Rötzschke O., Stevanovic S., Jung G., Rammensee H. G.. 1991; Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature351:290–296
    [Google Scholar]
  14. Falk K., Rötzschke O., Stevanovic S., Jung G., Rammensee H. G.. 1994; Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Immunogenetics39:230–242
    [Google Scholar]
  15. Hammerberg C., Schurig G. G.. 1986; Characterization of monoclonal antibodies directed against swine leukocytes. Veterinary Immunology and Immunopathology11:107–121
    [Google Scholar]
  16. Hooft van Iddekinge B. J., de Wind N., Wensvoort G., Kimman T. G., Gielkens A. L., Moormann R. J.. 1996; Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs; influence of different promoters on gene expression and on protection. Vaccine14:6–12
    [Google Scholar]
  17. Hulst M. M., Westra D. F., Wensvoort G., Moormann R. J. M.. 1993; Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. Journal of Virology67:5435–5442
    [Google Scholar]
  18. Jonjic S., Koszinowski U. H.. 1984; Monoclonal antibodies reactive with swine lymphocytes. I. Antibodies to membrane structures that define the cytolytic T lymphocyte subset in the swine. Journal of Immunology133:647–652
    [Google Scholar]
  19. Jung G., Beck-Sickinger A. G.. 1992; Multiple peptide synthesis methods and their applications. Angewandte Chemie International Edition in English31:367–383
    [Google Scholar]
  20. Kimman T. G., Bianchi A. T. J., Wensvoort G., de Bruin T. G. M., Meliefste C.. 1993; Cellular immune response to hog cholera virus (HCV): T cells of immune pigs proliferate in vitro upon stimulation with live HCV, but the E1 envelope glycoprotein is not a major T-cell antigen. Journal of Virology67:2922–2927
    [Google Scholar]
  21. König M., Lengsfeld T., Pauly T., Stark R., Thiel H.-J.. 1995; Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. Journal of Virology69:6479–6486
    [Google Scholar]
  22. Kosmidou A., Ahl R., Thiel H.-J., Weiland E.. 1995; Differentiation of classical swine fever virus (CSFV) strains using monoclonal antibodies against structural glycoproteins. Veterinary Microbiology47:111–118
    [Google Scholar]
  23. Kubo R. T., Sette A., Grey H. M., Appella E., Sakaguchi K., Zhu N.-Z., Arnott D., Sherman N., Shabanowitz J., Michel H., Bodnar W. M., Davis T. A., Hunt D. F.. 1994; Definition of specific peptide motifs for four major HLA-A alleles. Journal of Immunology152:3913–3924
    [Google Scholar]
  24. McClurkin A. W., Norman J. O.. 1966; Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Canadian Journal of Comparative Medicine and Veterinary Science30:190–198
    [Google Scholar]
  25. Menne S., Maschke J., Tolle T. K., Lu M., Roggendorf M.. 1997; Characterization of T-cell response to woodchuck hepatitis virus core protein and protection of woodchucks from infection by immunization with peptides containing a T-cell epitope. Journal of Virology71:65–74
    [Google Scholar]
  26. Meyers G., Thiel H.-J.. 1996; Molecular characterization of pestiviruses. Advances in Virus Research47:53–118
    [Google Scholar]
  27. Meyers G., Rümenapf T., Thiel H.-J.. 1989; Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology171:555–567
    [Google Scholar]
  28. Muller C. P., Ammerlaan W., Fleckenstein B., Krauss S., Kalbacher H., Schneider F., Jung G., Wiesmüller K. H.. 1996; Activation of T cells by the ragged tail of MHC class II-presented peptides of the measles virus fusion protein. International Immunology8:445–456
    [Google Scholar]
  29. Ober B. T., Summerfield A., Mattlinger C., Wiesmüller K. H., Jung G., Pfaff E., Saalmüller A., Rziha H. J.. 1998; Vaccine-induced, pseudorabies virus-specific, extrathymic CD4+CD8+ memory T-helper cells in swine. Journal of Virology72:4866–4873
    [Google Scholar]
  30. Oldstone M. B. A., Tishon A., Geckeler R., Lewicki H., Whitton J. L.. 1992; A common antiviral cytotoxic T-lymphocyte epitope for diverse major histocompatibility complex haplotypes: Implications for vaccination. Proceedings of the National Academy of Sciences, USA89:2752–2755
    [Google Scholar]
  31. Partidos C. D., Vohra P., Steward M. W.. 1996; Induction of measles virus-specific cytotoxic T-cell responses after intranasal immunization with synthetic peptides. Immunology87:179–185
    [Google Scholar]
  32. Pauly T., Elbers K., König M., Lengsfeld T., Saalmüller A., Thiel H.-J.. 1995; Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. Journal of General Virology76:3039–3049
    [Google Scholar]
  33. Pescovitz M. D., Lunney J. K., Sachs D. H.. 1984; Preparation and characterization of monoclonal antibodies reactive with porcine PBL. Journal of Immunology133:368–375
    [Google Scholar]
  34. Pittler H., Brack M., Schulz L. C., Rohde G., Witte K., Liess B.. 1968; Investigations of European hog cholera. I. The present situation of the epidemic in Northern Germany. Deutsche Tierärztliche Wochenschrift75:537–542 (in German
    [Google Scholar]
  35. Rodriguez A., Saiz J. C., Novella I. S., Andreu D., Sobrino F.. 1994; Antigenic specificity of porcine T cell response against foot-and-mouth disease virus structural proteins: identification of T helper epitopes in VP1. Virology205:24–33
    [Google Scholar]
  36. Ruggli N., Tratschin J. D., Mittelholzer C., Hofmann M. A.. 1996; Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. Journal of Virology70:3478–3487
    [Google Scholar]
  37. Rümenapf T., Stark R., Meyers G., Thiel H.-J.. 1991; Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. Journal of Virology65:589–597
    [Google Scholar]
  38. Sachs D. H., Leight G., Cone J. L., Schwarz S., Stuart L., Rosenberg S. A.. 1976; Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. Transplantation22:559–567
    [Google Scholar]
  39. Shirai M., Pendleton C. D., Ahlers J., Takeshita T., Newman M., Berzofsky J. A.. 1994; Helper-cytotoxic T Lymphocyte (CTL) determinant linkage required for priming of anti-HIV CD8+ CTL in vivo with peptide vaccine constructs. Journal of Immunology152:549–556
    [Google Scholar]
  40. Stegeman A., Elbers A., de Smit H., Moser H., Smak J., Pluimers F.. 2000; The 1997–1998 epidemic of classical swine fever in the Netherlands. Veterinary Microbiology73:183–196
    [Google Scholar]
  41. Stuhler G., Walden P.. 1993; Collaboration of helper and cytotoxic T lymphocytes. European Journal of Immunology23:2279–2286
    [Google Scholar]
  42. Summerfield A., Rziha H. J., Saalmüller A.. 1996; Functional characterization of porcine CD4+CD8+ extrathymic T lymphocytes. Cellular Immunology168:291–296
    [Google Scholar]
  43. Tanguay S., Killion J. J.. 1994; Direct comparison of ELISPOT and ELISA-based assays for detection of individual cytokine-secreting cells. Lymphokine and Cytokine Research13:259–263
    [Google Scholar]
  44. van Rijn P. A., Bossers A., Wensvoort G., Moormann R. J. M.. 1996; Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. Journal of General Virology77:2737–2745
    [Google Scholar]
  45. van Zijl M., Wensvoort G., de Kluyver E., Hulst M., van der Gulden H., Gielkens A., Berns A., Moormann R.. 1991; Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. Journal of Virology65:2761–2765
    [Google Scholar]
  46. Weiland E., Stark R., Haas B., Rümenapf T., Meyers G., Thiel H.-J.. 1990; Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. Journal of Virology64:3563–3569
    [Google Scholar]
  47. Wengler G.. 1991; Family Flaviviridae . In Virus Taxonomy. Fifth Report of the International Committee on Taxonomy of Viruses pp223–233 Edited by Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F.. Berlin: Springer-Verlag;
    [Google Scholar]
  48. Wiesmüller K. H., Jung G., Hess G.. 1989; Novel low-molecular-weight synthetic vaccine against foot-and-mouth disease containing a potent B-cell and macrophage activator. Vaccine7:29–33
    [Google Scholar]
  49. Yu M., Wang L. F., Shiell B. J., Morrissy C. J., Westbury H. A.. 1996; Fine mapping of a C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestiviruses. Virology222:289–292
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-3-551
Loading
/content/journal/jgv/10.1099/0022-1317-83-3-551
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error