1887

Abstract

Early during infection, the herpes simplex regulatory protein ICP0 promotes the proteasome-dependent degradation of a number of cellular proteins and the loss of a number of SUMO-1-modified protein isoforms, including PML. Recently, ICP0 has been shown to induce the accumulation of conjugated ubiquitin and function as a ubiquitin E3 ligase. However, certain aspects of the biochemistry, cell biology and the links between SUMO-1 conjugation/deconjugation and protein degradation remain unclear. For example, it is not currently known whether SUMO-1 deconjugation is a prerequisite for ubiquitination or degradation and, if so, by what mechanism this may occur. To help address these questions, a SUMO-specific protease (SENP1) was cloned and its expression and localization in relation to ICP0 examined. A cell line was established which constitutively expresses SUMO-1 to facilitate studies of localization and biochemistry. SENP1 localized to the nucleus mainly in discrete subdomains, a subset of which co-localized with the PML bodies. Both ICP0 and SENP1 protease promoted the loss of SUMO-1 from the nucleus, observed both for the endogenous species and the cell line expressing the epitope-tagged SUMO-1. The tagged SUMO-1 was recruited into high molecular mass conjugates in the cell line, and expression of SENP1 promoted loss of these species, including the modified species of PML. Finally, in co-transfection experiments ICP0 promoted the recruitment of SENP1 to nuclear domains, a result which was also observed early during infection. The significance of these findings is discussed in relation to the function of ICP0.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-12-2951
2002-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/12/0832951a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-12-2951&mimeType=html&fmt=ahah

References

  1. Aravind, L. & Koonin, E. V. ( 2000; ). The U box is a modified RING finger – a common domain in ubiquitination. Current Biology 10, R132-134.[CrossRef]
    [Google Scholar]
  2. Batchelor, A. H. & O’Hare, P. ( 1992; ). Localization of cis-acting sequence requirements in the promoter of the latency-associated transcript of herpes simplex virus type 1 required for cell-type-specific activity. Journal of Virology 66, 3573-3582.
    [Google Scholar]
  3. Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E. & Freemont, P. S. ( 1996; ). PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971-982.
    [Google Scholar]
  4. Boutell, C., Sadis, S. & Everett, R. D. ( 2002; ). Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro. Journal of Virology 76, 841-850.[CrossRef]
    [Google Scholar]
  5. Cai, W., Astor, L. A., Liptak, L. M., Cho, C., Coen, D. M. & Schaffer, P. A. ( 1993; ). The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency. Journal of Virology 67, 7501-7512.
    [Google Scholar]
  6. Clements, G. B. & Stow, N. D. ( 1989; ). A herpes simplex virus type 1 mutant containing a deletion within immediate early gene 1 is latency-competent in mice. Journal of General Virology 70, 2501-2506.[CrossRef]
    [Google Scholar]
  7. Desterro, J. M., Rodriguez, M. S. & Hay, R. T. ( 1998; ). SUMO-1 modification of IκBα inhibits NF-κB activation. Molecular Cell 2, 233-239.[CrossRef]
    [Google Scholar]
  8. Everett, R. D. ( 2000; ). ICP0 induces the accumulation of co-localizing conjugated ubiquitin. Journal of Virology 74, 9994-10005.[CrossRef]
    [Google Scholar]
  9. Everett, R. D. & Maul, G. G. ( 1994; ). HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO Journal 13, 5062-5069.
    [Google Scholar]
  10. Everett, R., O’Hare, P., O’Rourke, D., Barlow, P. & Orr, A. ( 1995; ). Point mutations in the herpes simplex virus type 1 Vmw110 RING finger helix affect activation of gene expression, viral growth, and interaction with PML-containing nuclear structures. Journal of Virology 69, 7339-7344.
    [Google Scholar]
  11. Everett, R. D., Meredith, M., Orr, A., Cross, A., Kathoria, M. & Parkinson, J. ( 1997; ). A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO Journal 16, 1519-1530.[CrossRef]
    [Google Scholar]
  12. Everett, R. D., Freemont, P., Saitoh, H., Dasso, M., Orr, A., Kathoria, M. & Parkinson, J. ( 1998; ). The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. Journal of Virology 72, 6581-6591.
    [Google Scholar]
  13. Everett, R. D., Earnshaw, W. C., Findlay, J. & Lomonte, P. ( 1999a; ). Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO Journal 18, 1526-1538.[CrossRef]
    [Google Scholar]
  14. Everett, R. D., Meredith, M. & Orr, A. ( 1999b; ). The ability of herpes simplex virus type 1 immediate-early protein Vmw110 to bind to a ubiquitin-specific protease contributes to its roles in the activation of gene expression and stimulation of virus replication. Journal of Virology 73, 417-426.
    [Google Scholar]
  15. Freemont, P. S. ( 2000; ). RING for destruction? Current Biology 10, R84-87.[CrossRef]
    [Google Scholar]
  16. Gong, L., Millas, S., Maul, G. G. & Yeh, E. T. ( 2000; ). Differential regulation of sentrinized proteins by a novel sentrin-specific protease. Journal of Biological Chemistry 275, 3355-3359.[CrossRef]
    [Google Scholar]
  17. Hang, J. & Dasso, M. ( 2002; ). Association of the human SUMO-1 protease SENP2 with the nuclear pore. Journal of Biological Chemistry 277, 19961-19966.[CrossRef]
    [Google Scholar]
  18. Harris, R. A., Everett, R. D., Zhu, X. X., Silverstein, S. & Preston, C. M. ( 1989; ). Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. Journal of Virology 63, 3513-3515.
    [Google Scholar]
  19. Ishov, A. M. & Maul, G. G. ( 1996; ). The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. Journal of Cell Biology 134, 815-826.[CrossRef]
    [Google Scholar]
  20. Ishov, A. M., Sotnikov, A. G., Negorev, D., Vladimirova, O. V., Neff, N., Kamitani, T., Yeh, E. T., Strauss, J. F.III & Maul, G. G. ( 1999; ). PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. Journal of Cell Biology 147, 221-234.[CrossRef]
    [Google Scholar]
  21. Kamitani, T., Kito, K., Nguyen, H. P., Wada, H., Fukuda-Kamitani, T. & Yeh, E. T. ( 1998a; ). Identification of three major sentrinization sites in PML. Journal of Biological Chemistry 273, 26675-26682.[CrossRef]
    [Google Scholar]
  22. Kamitani, T., Nguyen, H. P., Kito, K., Fukuda-Kamitani, T. & Yeh, E. T. ( 1998b; ). Covalent modification of PML by the sentrin family of ubiquitin-like proteins. Journal of Biological Chemistry 273, 3117-3120.[CrossRef]
    [Google Scholar]
  23. Kawaguchi, Y., Bruni, R. & Roizman, B. ( 1997; ). Interaction of herpes simplex virus 1 α regulatory protein ICP0 with elongation factor 1 Δ: ICP0 affects translational machinery. Journal of Virology 71, 1019-1024.
    [Google Scholar]
  24. Kim, K. I., Baek, S. H., Jeon, Y. J., Nishimori, S., Suzuki, T., Uchida, S., Shimbara, N., Saitoh, H., Tanaka, K. & Chung, C. H. ( 2000; ). A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. Journal of Biological Chemistry 275, 14102-14106.[CrossRef]
    [Google Scholar]
  25. Lallemand-Breitenbach, V., Zhu, J., Puvion, F., Koken, M., Honore, N., Doubeikovsky, A., Duprez, E., Pandolfi, P. P., Puvion, E., Freemont, P. & de The, H. ( 2001; ). Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor α degradation. Journal of Experimental Medicine 193, 1361-1371.[CrossRef]
    [Google Scholar]
  26. Leib, D. A., Coen, D. M., Bogard, C. L., Hicks, K. A., Yager, D. R., Knipe, D. M., Tyler, K. L. & Schaffer, P. A. ( 1989; ). Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. Journal of Virology 63, 759-768.
    [Google Scholar]
  27. Leppard, K. N. & Everett, R. D. ( 1999; ). The adenovirus type 5 E1b 55K and E4 Orf3 proteins associate in infected cells and affect ND10 components. Journal of General Virology 80, 997-1008.
    [Google Scholar]
  28. Li, S. J. & Hochstrasser, M. ( 1999; ). A new protease required for cell-cycle progression in yeast. Nature 398, 246-251.[CrossRef]
    [Google Scholar]
  29. Li, S. J. & Hochstrasser, M. ( 2000; ). The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Molecular and Cellular Biology 20, 2367-2377.[CrossRef]
    [Google Scholar]
  30. Lomonte, P., Sullivan, K. F. & Everett, R. D. ( 2001; ). Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0. Journal of Biological Chemistry 276, 5829-5835.[CrossRef]
    [Google Scholar]
  31. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. ( 1997; ). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107.[CrossRef]
    [Google Scholar]
  32. Matunis, M. J., Coutavas, E. & Blobel, G. ( 1996; ). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. Journal of Cell Biology 135, 1457-1470.[CrossRef]
    [Google Scholar]
  33. Maul, G. G. ( 1998; ). Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays 20, 660-667.[CrossRef]
    [Google Scholar]
  34. Müller, S., Matunis, M. J. & Dejean, A. ( 1998; ). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO Journal 17, 61-70.[CrossRef]
    [Google Scholar]
  35. Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M. & Yeh, E. T. ( 1996; ). Protection against Fas/APO-1- and tumour necrosis factor-mediated cell death by a novel protein, sentrin. Journal of Immunology 157, 4277-4281.
    [Google Scholar]
  36. O’Rourke, D. & O’Hare, P. ( 1993; ). Mutually exclusive binding of two cellular factors within a critical promoter region of the gene for the IE110k protein of herpes simplex virus. Journal of Virology 67, 7201-7214.
    [Google Scholar]
  37. O’Rourke, D., Elliott, G., Papworth, M., Everett, R. & O’Hare, P. ( 1998; ). Examination of determinants for intranuclear localization and transactivation within the RING finger of herpes simplex virus type 1 IE110k protein. Journal of General Virology 79, 537-548.
    [Google Scholar]
  38. Parkinson, J. & Everett, R. D. ( 2000; ). Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. Journal of Virology 74, 10006-10017.[CrossRef]
    [Google Scholar]
  39. Parkinson, J., Lees-Miller, S. P. & Everett, R. D. ( 1999; ). Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA- dependent protein kinase. Journal of Virology 73, 650-657.
    [Google Scholar]
  40. Roizman, B. & Sears, A. E. ( 1996; ). The replication of herpes simplex viruses. In Fields Virology , pp. 2231-2295. Edited by B. N. Fields, D. M. Knipe & P. Howley. Philadelphia:Lippincott–Raven.
  41. Sacks, W. R. & Schaffer, P. A. ( 1987; ). Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. Journal of Virology 61, 829-839.
    [Google Scholar]
  42. Saitoh, H. & Hinchey, J. ( 2000; ). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry 275, 6252-6258.[CrossRef]
    [Google Scholar]
  43. Stow, N. D. & Stow, E. C. ( 1986; ). Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. Journal of General Virology 67, 2571-2585.[CrossRef]
    [Google Scholar]
  44. Suzuki, T., Ichiyama, A., Saitoh, H., Kawakami, T., Omata, M., Chung, C. H., Kimura, M., Shimbara, N. & Tanaka, K. ( 1999; ). A new 30-kDa ubiquitin-related SUMO-1 hydrolase from bovine brain. Journal of Biological Chemistry 274, 31131-31134.[CrossRef]
    [Google Scholar]
  45. Tyers, M. & Jorgensen, P. ( 2000; ). Proteolysis and the cell cycle: with this RING I do thee destroy. Current Opinion in Genetics & Development 10, 54-64.[CrossRef]
    [Google Scholar]
  46. Van Sant, C., Hagglund, R., Lopez, P. & Roizman, B. ( 2001; ). The infected cell protein 0 of herpes simplex virus 1 dynamically interacts with proteasomes, binds and activates the cdc34 E2 ubiquitin-conjugating enzyme, and possesses in vitro E3 ubiquitin ligase activity. Proceedings of the National Academy of Sciences, USA 98, 8815-8820.[CrossRef]
    [Google Scholar]
  47. Zhong, S., Muller, S., Ronchetti, S., Freemont, P. S., Dejean, A. & Pandolfi, P. P. ( 2000; ). Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748-2752.
    [Google Scholar]
  48. Zhu, X. X., Chen, J. X., Young, C. S. & Silverstein, S. ( 1990; ). Reactivation of latent herpes simplex virus by adenovirus recombinants encoding mutant IE-0 gene products. Journal of Virology 64, 4489-4498.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-12-2951
Loading
/content/journal/jgv/10.1099/0022-1317-83-12-2951
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error