1887

Abstract

A bioassay that measured the interleukin (IL)-12-induced production of interferon (IFN)-γ from mouse splenocytes was used to identify a soluble factor in the supernatants of vaccinia virus (VV)-infected cells that inhibited the production of IFN-γ. This soluble factor was expressed by 14 out of 16 VV strains including the Western Reserve (WR) strain, but strains Copenhagen and Tashkent and a mutant of strain WR called 6/2 lacked this activity. The gene encoding this activity was identified as C12L by transferring DNA present in VV WR but missing in VV WR 6/2 into VV Copenhagen and testing for expression of the soluble factor. The C12L protein shows amino acid similarity to IL-18 binding proteins that are encoded by poxviruses, mice and humans, and C12L protein produced from VV or baculovirus inhibited the biological activity of mouse IL-18 . Thus the inhibition of IL-12-induced IFN-γ production was due to indirect effects of C12L on IL-18, illustrating the synergistic action of these pro-inflammatory cytokines. To study the role of the C12L protein in the virus life-cycle, we constructed a deletion mutant lacking the C12L gene and a revertant virus in which the gene was reinserted into the deletion mutant. the replication and plaque size of these viruses were indistinguishable. However, infection of BALB/c mice by the intranasal route showed that the deletion mutant was attenuated and induced lower weight loss and signs of illness compared to controls.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2833
2002-11-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832833a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2833&mimeType=html&fmt=ahah

References

  1. Afonso C. L., Tulman E. R., Lu Z., Zsak L., Osorio F. A., Balinsky C., Kutish G. F., Rock D. L. 2002; The genome of swinepox virus. Journal of Virology 76:783–790
    [Google Scholar]
  2. Alcamí A., Koszinowski U. H. 2000; Viral mechanisms of immune evasion. Trends in Microbiology 8:410–418
    [Google Scholar]
  3. Alcamí A., Smith G. L. 1992; A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167
    [Google Scholar]
  4. Alcamí A., Smith G. L. 1995; Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. Journal of Virology 69:4633–4639
    [Google Scholar]
  5. Alcamí A., Smith G. L. 1996; A mechanism for the inhibition of fever by a virus. Proceedings of the National of Academy of Sciences, USA 93:11029–11034
    [Google Scholar]
  6. Alcamí A., Smith G. L. 2002; The vaccinia virus soluble interferon-γ receptor is a homodimer. Journal of General Virology 83:545–549
    [Google Scholar]
  7. Alcamí A., Symons J. A., Collins P. D., Williams T. J., Smith G. L. 1998; Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. Journal of Immunology 160:624–633
    [Google Scholar]
  8. Alcamí A., Khanna A., Paul N. L., Smith G. L. 1999; Vaccinia virus strains Lister, USSR and Evans express soluble and cell surface tumour necrosis factors receptor. Journal of General Virology 80:949–959
    [Google Scholar]
  9. Alcamí A., Symons J. A., Smith G. L. 2000; The vaccinia soluble IFN-α/β receptor binds to the cell surface and protects cells from the anti-viral effects of IFN. Journal of Virology 74:11230–11239
    [Google Scholar]
  10. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396
    [Google Scholar]
  11. Bartlett N., Symons J. A., Tscharke D. C., Smith G. L. 2002; The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. Journal of General Virology 83:1965–1976
    [Google Scholar]
  12. Beattie E., Tartaglia J., Paoletti E. 1991; Vaccinia-virus encoded eIF-2α homolog abrogates the antiviral effect of interferon. Virology 183:419–422
    [Google Scholar]
  13. Born T. L., Morrison L. A., Esteban D. J., VandenBos T., Thebeau L. G., Chen N., Spriggs M. K., Sims J. E., Buller R. M. L. 2000; A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. Journal of Immunology 164:3246–3254
    [Google Scholar]
  14. Chakrabarti S., Brechling K., Moss B. 1985; Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Molecular and Cellular Biology 5:3403–3409
    [Google Scholar]
  15. Chang H.-W., Watson J. C., Jacobs B. L. 1992; The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proceedings of the National of Academy of Sciences, USA 89:4825–4829
    [Google Scholar]
  16. Colamonici O. R., Domanski P., Sweitzer S. M., Larner A., Buller R. M. L. 1995; Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. Journal of Biological Chemistry 270:15974–15978
    [Google Scholar]
  17. Comeau M. R., Johnson R., DuBose R. F., Petersen M., Gearing P., VandenBos T., Park L., Farrah T., Buller R. M., Cohen J. I., Strockbine L. D., Rauch C., Spriggs M. K. 1998; A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity 8:473–482
    [Google Scholar]
  18. Davison A. J., Moss B. 1990; New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins. Nucleic Acids Research 18:4285–4286
    [Google Scholar]
  19. Falkner F. G., Moss B. 1988; Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. Journal of Virology 62:1849–1854
    [Google Scholar]
  20. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. Journal of Virology 64:3108–3111
    [Google Scholar]
  21. Fantuzzi G., Reed D. A., Dinarello C. A. 1999; IL-12-induced IFN-gamma is dependent on caspase-1 processing of the IL- 18 precursor. Journal of Clinical Investigation 104:761–767
    [Google Scholar]
  22. Gardner J. D., Tscharke D. C., Reading P. C., Smith G. L. 2001; Vaccinia virus semaphorin A39R is a 50–55 kDa secreted glycoprotein that affects the outcome of infection in a murine intradermal model. Journal of General Virology 82:2083–2093
    [Google Scholar]
  23. Gately M. K., Renzetti L. M., Magram J., Stern A. S., Adorini L., Gubler U., Presky D. H. 1998; The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annual Review of Immunology 16:495–521
    [Google Scholar]
  24. Graham K. A., Lalani A. S., Macen J. L., Ness T. L., Barry M., Liu L., Lucas A., Clark-Lewis I., Moyer R. W., McFadden G. 1997; The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 229:12–24
    [Google Scholar]
  25. Hughes S. J., Johnston L. H., de Carlos A., Smith G. L. 1991; Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae . Journal of Biological Chemistry 266:20103–20109
    [Google Scholar]
  26. Kerr S. M., Smith G. L. 1991; Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology 180:625–632
    [Google Scholar]
  27. Kettle S., Blake N. W., Law K. M., Smith G. L. 1995; Vaccinia virus serpins B13R (SPI-2) and B22R (SPI-1) encode Mr 38·5 and 40K, intracellular polypeptides that do not affect virus virulence in a murine intranasal model. Virology 206:136–147
    [Google Scholar]
  28. Kettle S., Alcamí A., Khanna A., Ehret R., Jassoy C., Smith G. L. 1997; Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1β-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1β-induced fever. Journal of General Virology 78:677–685
    [Google Scholar]
  29. Kotwal G. J., Moss B. 1988a; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 335:176–178
    [Google Scholar]
  30. Kotwal G. J., Moss B. 1988b; Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  31. Kotwal G. J., Isaacs S. N., McKenzie R., Frank M. M., Moss B. 1990; Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 250:827–830
    [Google Scholar]
  32. Lee H. J., Essani K., Smith G. L. 2001; The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology 281:170–192
    [Google Scholar]
  33. Mackett M., Smith G. L., Moss B. 1985; The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: a Practical Approach pp 191–211 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  34. Moss B., Winters E., Cooper J. A. 1981; Deletion of a 9,000-base-pair segment of the vaccinia virus genome that encodes nonessential polypeptides. Journal of Virology 40:387–395
    [Google Scholar]
  35. Mossman K., Upton C., Buller R. M., McFadden G. 1995; Species specificity of ectromelia virus and vaccinia virus interferon-gamma binding proteins. Virology 208:762–769
    [Google Scholar]
  36. Nakanishi K., Yoshimoto T., Tsutsui H., Okamura H. 2001; Interleukin-18 regulates both Th1 and Th2 responses. Annual Review of Immunology 19:423–474
    [Google Scholar]
  37. Ng A., Tscharke D. C., Reading P. C., Smith G. L. 2001; The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. Journal of General Virology 82:2095–2105
    [Google Scholar]
  38. Novick D., Kim S. H., Fantuzzi G., Reznikov L. L., Dinarello C. A., Rubinstein M. 1999; Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10:127–136
    [Google Scholar]
  39. Reading P. C., Khanna A., Smith G. L. 2002; Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence. Virology 292:285–298
    [Google Scholar]
  40. Robinson D., Shibuya K., Mui A., Zonin F., Murphy E., Sana T., Hartley S. B., Menon S., Kastelein R., Bazan F., O′Garra A. 1997; IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. Immunity 7:571–581
    [Google Scholar]
  41. Shchelkunov S. N., Safronov P. F., Totmenin A. V., Petrov N. A., Ryazankina O. I., Gutorov V. V., Kotwal G. J. 1998; The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243:432–460
    [Google Scholar]
  42. Shchelkunov S. N., Totmenin A. V., Babkin I. V., Safronov P. F., Ryazankina O. I., Petrov N. A., Gutorov V. V., Uvarova E. A., Mikheev M. V., Sisler J. R., Esposito J. J., Jahrling P. B., Moss B., Sandakhchiev L. S. 2001; Human monkeypox and smallpox viruses: genomic comparison. FEBS Letters 509:66–70
    [Google Scholar]
  43. Sims J. E. 2002; IL-1 and IL-18 receptors, and their extended family. Current Opinion in Immunology 14:117–122
    [Google Scholar]
  44. Smith G. L. 2000; Secreted poxvirus proteins that interact with the immune system. In Effects of Microbes on the Immune System pp 491–507 Edited by Cunningham M. W., Fujinami R. S. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  45. Smith G. L., Chan Y. S. 1991; Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. Journal of General Virology 72:511–518
    [Google Scholar]
  46. Smith C. A., Davis T., Anderson D., Solam L., Beckmann M. P., Jerzy R., Dower S. K., Cosman D., Goodwin R. G. 1990; A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–1023
    [Google Scholar]
  47. Smith C. A., Smith T. D., Smolak P. J., Friend D., Hagen H., Gernart M., Park L., Pickup D. J., Torrance D., Mohler K., Schooley K., Goodwin R. G. 1997; Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits β chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 236:316–327
    [Google Scholar]
  48. Smith V. P., Bryant N. A., Alcamí A. 2000; Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. Journal of General Virology 81:1223–1230
    [Google Scholar]
  49. Spriggs M., Hruby D. E., Maliszewski C. R., Pickup D. J., Sims J. E., Buller R. M. L., Vanslyke J. 1992; Vaccinia and cowpox viruses encode a novel secreted interleukin-1 binding protein. Cell 71:145–152
    [Google Scholar]
  50. Symons J. A., Alcamí A., Smith G. L. 1995; Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560
    [Google Scholar]
  51. Symons J. A., Tscharke D. C., Price N., Smith G. L. 2002; A study of the vaccinia virus interferon-γ receptor and its contribution to virus virulence. Journal of General Virology 83:1953–1964
    [Google Scholar]
  52. Tanaka-Kataoka M., Kunikata T., Takayama S., Iwaki K., Ohashi K., Ikeda M., Kurimoto M. 1999; In vivo antiviral effect of interleukin 18 in a mouse model of vaccinia virus infection. Cytokine 11:593–599
    [Google Scholar]
  53. Tomonari K. 1988; A rat antibody against a structure functionally related to the mouse T-cell receptor/T3 complex. Immunogenetics 28:455–458
    [Google Scholar]
  54. Tortorella D., Gewurz B. E., Furman M. H., Schust D. J., Ploegh H. L. 2000; Viral subversion of the immune system. Annual Review of Immunology 18:861–926
    [Google Scholar]
  55. Tscharke D. C., Smith G. L. 1999; A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. Journal of General Virology 80:2751–2755
    [Google Scholar]
  56. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. Journal of General Virology 83:1977–1986
    [Google Scholar]
  57. Upton C., Mossman K., McFadden G. 1992; Encoding of a homolog of IFN-γ receptor by myxoma virus. Science 258:1369–1372
    [Google Scholar]
  58. Xiang Y., Moss B. 1999a; IL-18 binding and inhibition of interferon gamma induction by human poxvirus-encoded proteins. Proceedings of the National of Academy of Sciences, USA 96:11537–11542
    [Google Scholar]
  59. Xiang Y., Moss B. 1999b; Identification of human and mouse homologs of the MC51L–53L–54L family of secreted glycoproteins encoded by the molluscum contagiosum poxvirus. Virology 257:297–302
    [Google Scholar]
  60. Xiang Y., Moss B. 2001a; Correspondence of the functional epitopes of poxvirus and human interleukin-18-binding proteins. Journal of Virology 75:9947–9954
    [Google Scholar]
  61. Xiang Y., Moss B. 2001b; Determination of the functional epitopes of human interleukin-18-binding protein by site-directed mutagenesis. Journal of Biological Chemistry 276:17380–17386
    [Google Scholar]
  62. Yoshimoto T., Takeda K., Tanaka T., Ohkusu K., Kashiwamura S., Okamura H., Akira S., Nakanishi K. 1998; IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. Journal of Immunology 161:3400–3407
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2833
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2833
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error