1887
Preview this article:
Zoom in
Zoomout

An overview of the determinants of CCR5 and CXCR4 co-receptor function, Page 1 of 1

| /docserver/preview/fulltext/jgv/82/8/0821807a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-8-1807
2001-08-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/8/0821807a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-8-1807&mimeType=html&fmt=ahah

References

  1. Alkhatib, G., Ahuja, S. S., Light, D., Mummidi, S., Berger, E. A. & Ahuja, S. K. ( 1997a; ). CC chemokine receptor 5-mediated signaling and HIV-1 co-receptor activity share common structural determinants. Critical residues in the third extracellular loop support HIV-1 fusion. Journal of Biological Chemistry 272, 19771-19776.[CrossRef]
    [Google Scholar]
  2. Alkhatib, G., Locati, M., Kennedy, P. E., Murphy, P. M. & Berger, E. A. ( 1997b; ). HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology 234, 340-348.[CrossRef]
    [Google Scholar]
  3. Amara, A., Gall, S. L., Schwartz, O., Salamero, J., Montes, M., Loetscher, P., Baggiolini, M., Virelizier, J. L. & Arenzana-Seisdedos, F. ( 1997; ). HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. Journal of Experimental Medicine 186, 139-146.[CrossRef]
    [Google Scholar]
  4. Arakaki, R., Tamamura, H., Premanathan, M., Kanbara, K., Ramanan, S., Mochizuki, K., Baba, M., Fujii, N. & Nakashima, H. ( 1999; ). T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. Journal of Virology 73, 1719-1723.
    [Google Scholar]
  5. Atchison, R. E., Gosling, J., Monteclaro, F. S., Franci, C., Digilio, L., Charo, I. F. & Goldsmith, M. A. ( 1996; ). Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science 274, 1924-1926.[CrossRef]
    [Google Scholar]
  6. Baba, M., Nishimura, O., Kanzaki, N., Okamoto, M., Sawada, H., Iizawa, Y., Shiraishi, M., Aramaki, Y., Okonogi, K., Ogawa, Y., Meguro, K. & Fujino, M. ( 1999; ). A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proceedings of the National Academy of Sciences, USA 96, 5698-5703.[CrossRef]
    [Google Scholar]
  7. Bandres, J. C., Wang, Q. F., O’Leary, J., Baleaux, F., Amara, A., Hoxie, J. A., Zolla-Pazner, S. & Gorny, M. K. ( 1998; ). Human immunodeficiency virus (HIV) envelope binds to CXCR4 independently of CD4, and binding can be enhanced by interaction with soluble CD4 or by HIV envelope deglycosylation. Journal of Virology 72, 2500-2504.
    [Google Scholar]
  8. Bazan, H. A., Alkhatib, G., Broder, C. C. & Berger, E. A. ( 1998; ). Patterns of CCR5, CXCR4, and CCR3 usage by envelope glycoproteins from human immunodeficiency virus type 1 primary isolates. Journal of Virology 72, 4485-4491.
    [Google Scholar]
  9. Bennetts, B. H., Teutsch, S. M., Buhler, M. M., Heard, R. N. & Stewart, G. J. ( 1997; ). The CCR5 deletion mutation fails to protect against multiple sclerosis. Human Immunology 58, 52-59.[CrossRef]
    [Google Scholar]
  10. Berger, E. ( 1997; ). HIV entry and tropism: the chemokine receptor expression. AIDS 11 (suppl. A), S3–S16.
    [Google Scholar]
  11. Berger, E. A., Doms, R. W., Fenyo, E. M., Korber, B. T., Littman, D. R., Moore, J. P., Sattentau, Q. J., Schuitemaker, H., Sodroski, J. & Weiss, R. A. ( 1998; ). A new classification for HIV-1 [letter]. Nature 391, 240.[CrossRef]
    [Google Scholar]
  12. Bieniasz, P. D., Fridell, R. A., Aramori, I., Ferguson, S. S., Caron, M. G. & Cullen, B. R. ( 1997; ). HIV-1-induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR-5 co-receptor. EMBO Journal 16, 2599-2609.[CrossRef]
    [Google Scholar]
  13. Blanpain, C., Doranz, B. J., Vakili, J., Rucker, J., Govaerts, C., Baik, S. S. W., Lorthioir, O., Migeotte, I., Libert, F., Baleux, F., Vassart, G., Doms, R. W. & Parmentier, M. ( 1999; ). Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 env protein. Journal of Biological Chemistry 274, 34719-34727.[CrossRef]
    [Google Scholar]
  14. Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J. & Springer, T. A. ( 1996; ). The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829-833.[CrossRef]
    [Google Scholar]
  15. Bour, S., Geleziunas, R. & Winberg, M. A. ( 1995; ). The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Microbiological Reviews 59, 63-93.
    [Google Scholar]
  16. Brelot, A., Heveker, N., Pleskoff, O., Sol, N. & Alizon, M. ( 1997; ). Role of the first and third extracellular domains of CXCR-4 in human immunodeficiency virus coreceptor activity. Journal of Virology 71, 4744-4751.
    [Google Scholar]
  17. Brelot, A., Heveker, N., Adema, K., Hosie, M. J., Willett, B. & Alizon, M. ( 1999; ). Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. Journal of Virology 73, 2576-2586.
    [Google Scholar]
  18. Brelot, A., Heveker, N., Montes, M. & Alizon, M. ( 2000; ). Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. Journal of Biological Chemistry 275, 23736-23744.[CrossRef]
    [Google Scholar]
  19. Chabot, D. J. & Broder, C. C. ( 2000; ). Substitutions in a homologous region of extracellular loop 2 of CXCR4 and CCR5 alter coreceptor activities for HIV-1 membrane fusion and virus entry. Journal of Biological Chemistry 275, 23774-23782.[CrossRef]
    [Google Scholar]
  20. Chabot, D. J., Zhang, P. F., Quinnan, G. V. & Broder, C. C. ( 1999; ). Mutagenesis of CXCR4 identifies important domains for human immunodeficiency virus type 1 X4 isolate envelope-mediated membrane fusion and virus entry and reveals cryptic coreceptor activity for R5 isolates. Journal of Virology 73, 6598-6609.
    [Google Scholar]
  21. Chabot, D. J., Chen, H., Dimitrov, D. S. & Broder, C. C. ( 2000; ). N-linked glycosylation of CXCR4 masks coreceptor function for CCR5- dependent human immunodeficiency virus type 1 isolates. Journal of Virology 74, 4404-4413.[CrossRef]
    [Google Scholar]
  22. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. ( 1997; ). Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263-273.[CrossRef]
    [Google Scholar]
  23. Chan, S. Y., Speck, R. F., Power, C., Gaffen, S. L., Chesebro, B. & Goldsmith, M. A. ( 1999; ). V3 recombinants indicate a central role for CCR5 as a coreceptor in tissue infection by human immunodeficiency virus type 1. Journal of Virology 73, 2350-2358.
    [Google Scholar]
  24. Chavda, S. C., Griffin, P., Han-Liu, Z., Keys, B., Vekony, M. A. & Cann, A. J. ( 1994; ). Molecular determinants of the V3 loop of human immunodeficiency virus type 1 glycoprotein gp120 responsible for controlling cell tropism. Journal of General Virology 75, 3249-3253.[CrossRef]
    [Google Scholar]
  25. Chesebro, B., Wehrly, K., Nishio, J. & Perryman, S. ( 1992; ). Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. Journal of Virology 66, 6547-6554.
    [Google Scholar]
  26. Cho, M. W., Lee, M. K., Carney, M. C., Berson, J. F., Doms, R. W. & Martin, M. A. ( 1998; ). Identification of determinants on a dualtropic human immunodeficiency virus type 1 envelope glycoprotein that confer usage of CXCR4. Journal of Virology 72, 2509-2515.
    [Google Scholar]
  27. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Cara, A., Gallo, R. C. & Lusso, P. ( 1996; ). The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection [see comments]. Nature Medicine 2, 1244-1247.[CrossRef]
    [Google Scholar]
  28. Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S. & Landau, N. R. ( 1997; ). Change in coreceptor use coreceptor use correlates with disease progression in HIV-1-infected individuals. Journal of Experimental Medicine 185, 621-628.[CrossRef]
    [Google Scholar]
  29. Cormier, E. G., Persuh, M., Thompson, A. D., Lin, S. W., Sakmar, T. P., Olson, W. C. & Dragic, T. ( 2000; ). Specific interaction of CCR5 amino-terminal domain peptides containing sulfo-tyrosines with HIV-1 envelope glycoprotein gp120. Proceedings of the National Academy of Sciences, USA 97, 5762-5767.[CrossRef]
    [Google Scholar]
  30. Cormier, E. G., Tran, D., Yukhayeva, L., Olson, W. C. & Dragic, T. ( 2001; ). Mapping the determinants of the CCR5 amino-terminal sulfopeptide interaction with soluble human immunodeficiency virus type 1 gp120/CD4 complexes. Journal of Virology 75, 5541-5549.[CrossRef]
    [Google Scholar]
  31. de Roda Husman, A. M., Koot, M., Cornelissen, M., Keet, I. P., Brouwer, M., Broersen, S. M., Bakker, M., Roos, M. T., Prins, M., de Wolf, F., Coutinho, R. A., Miedema, F., Goudsmit, J. & Schuitemaker, H. ( 1997; ). Association between CCR5 genotype and the clinical course of HIV-1 infection [see comments]. Annals of Internal Medicine 127, 882-890.[CrossRef]
    [Google Scholar]
  32. Doms, R. W. & Moore, J. P. (1997). HIV-1 coreceptor use: a molecular window into viral tropism. HIV Molecular Immunology Database, III-1–III-12.
  33. Donzella, G. A., Schols, D., Lin, S. W., Este, J. A., Nagashima, K. A., Maddon, P. J., Allaway, G. P., Sakmar, T. P., Henson, G., De Clercq, E. & Moore, J. P. ( 1998; ). AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Medicine 4, 72-77.[CrossRef]
    [Google Scholar]
  34. Doranz, B. J., Grovit-Ferbas, K., Sharron, M. P., Mao, S. H., Goetz, M. B., Daar, E. S., Doms, R. W. & O’Brien, W. A. ( 1997a; ). A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. Journal of Experimental Medicine 186, 1395-1400.[CrossRef]
    [Google Scholar]
  35. Doranz, B. J., Lu, Z. H., Rucker, J., Zhang, T. Y., Sharron, M., Cen, Y. H., Wang, Z. X., Guo, H. H., Du, J. G., Accavitti, M. A., Doms, R. W. & Peiper, S. C. ( 1997b; ). Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. Journal of Virology 71, 6305-6314.
    [Google Scholar]
  36. Doranz, B., Orsini, M., Turner, J., Hoffman, T., Berson, J., Hoxie, J., Peiper, S., Brass, L. & Doms, R. ( 1999; ). Identification of CXCR4 domains that support co-receptor and chemokine receptor functions. Journal of Virology 73, 2757-2761.
    [Google Scholar]
  37. Dragic, T., Trkola, A., Lin, S. W., Nagashima, K. A., Kajumo, F., Zhao, L., Olson, W. C., Wu, L., Mackay, C. R., Allaway, G. P., Sakmar, T. P., Moore, J. P. & Maddon, P. J. ( 1998; ). Amino-terminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry. Journal of Virology 72, 279-285.
    [Google Scholar]
  38. Dragic, T., Trkola, A., Thompson, D. A., Cormier, E. G., Kajumo, F. A., Maxwell, E., Lin, S. W., Ying, W., Smith, S. O., Sakmar, T. P. & Moore, J. P. ( 2000; ). A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proceedings of the National Academy of Sciences, USA 97, 5639-5644.[CrossRef]
    [Google Scholar]
  39. Este, J. A., Cabrera, C., De Clercq, E., Struyf, S., Van Damme, J., Bridger, G., Skerlj, R. T., Abrams, M. J., Henson, G., Gutierrez, A., Clotet, B. & Schols, D. ( 1999; ). Activity of different bicyclam derivatives against human immunodeficiency virus depends on their interaction with the CXCR4 chemokine receptor. Molecular Pharmacology 55, 67-73.
    [Google Scholar]
  40. Farzan, M., Choe, H., Vaca, L., Martin, K., Sun, Y., Desjardins, E., Ruffing, N., Wu, L., Wyatt, R., Gerard, N., Gerard, C. & Sodroski, J. ( 1998; ). A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5. Journal of Virology 72, 1160-1164.
    [Google Scholar]
  41. Farzan, M., Mirzabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard, N. P., Gerard, C., Sodroski, J. & Choe, H. ( 1999; ). Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667-676.[CrossRef]
    [Google Scholar]
  42. Farzan, M., Vasilieva, N., Schnitzler, C. E., Chung, S., Robinson, J., Gerard, N. P., Gerard, C., Choe, H. & Sodroski, J. ( 2000; ). A tyrosine-sulfated peptide based on the N-terminus of CCR5 interacts with a CD4-enhanced epitope of the HIV-1 gp120 envelope glycoprotein and inhibits HIV-1 entry. Journal of Biological Chemistry 275, 33516-33521.[CrossRef]
    [Google Scholar]
  43. Fenyo, E. M., Schuitemaker, H., Asjo, B. & McKeating, J. (1997). The history of HIV-1 biological phenotypes past, present, and future. HIV Molecular Immunology Database, III-13–III-18.
  44. Garred, P., Eugen-Olsen, J., Iversen, A. K., Benfield, T. L., Svejgaard, A. & Hofmann, B. ( 1997; ). Dual effect of CCR5 delta 32 gene deletion in HIV-1-infected patients. Copenhagen AIDS Study Group [letter] [see comments]. Lancet 349, 1884.
    [Google Scholar]
  45. Gerlach, L. O., Skerlj, R., Bridgers, G. J. & Schwartz, T. W. ( 2001; ). Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. Journal of Biological Chemistry 276, 14153-14160.
    [Google Scholar]
  46. Golding, H., Ouyang, J., Zaitseva, M., Broder, C. C., Dimitrov, D. S. & Lapham, C. ( 1999; ). Increased association of glycoprotein 120-CD4 with HIV type 1 coreceptors in the presence of complex-enhanced anti-CD4 monoclonal antibodies. AIDS Research and Human Retroviruses 15, 149-159.[CrossRef]
    [Google Scholar]
  47. Harrowe, G. & Cheng-Mayer, C. ( 1995; ). Amino acid substitutions in the V3 loop are responsible for adaptation to growth in transformed T-cell lines of a primary human immunodeficiency virus type 1. Virology 210, 490-494.[CrossRef]
    [Google Scholar]
  48. Heveker, N., Montes, M., Germeroth, L., Amara, A., Trautmann, A., Alizon, M. & Schneider-Mergener, J. ( 1998; ). Dissociation of the signalling and antiviral properties of SDF-1-derived small peptides. Current Biology 8, 369-376.[CrossRef]
    [Google Scholar]
  49. Hori, T., Sakaida, H., Sato, A., Nakajima, T., Shida, H., Yoshie, O. & Uchiyama, T. ( 1998; ). Detection and delineation of CXCR4 (fusin) as an entry and fusion cofactor for T-cell tropic HIV-1 by three different monoclonal antibodies. Journal of Immunology 160, 180-188.
    [Google Scholar]
  50. Howard, O. M., Korte, T., Tarasova, N. I., Grimm, M., Turpin, J. A., Rice, W. G., Michejda, C. J., Blumenthal, R. & Oppenheim, J. J. ( 1998a; ). Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor-mediated function. Journal of Leukocyte Biology 64, 6-13.
    [Google Scholar]
  51. Howard, O. M., Oppenheim, J. J., Hollingshead, M. G., Covey, J. M., Bigelow, J., McCormack, J. J., Buckheit, R. W.Jr, Clanton, D. J., Turpin, J. A. & Rice, W. G. ( 1998b; ). Inhibition of in vitro and in vivo HIV replication by a distamycin analogue that interferes with chemokine receptor function: a candidate for chemotherapeutic and microbicidal application. Journal of Medicinal Chemistry 41, 2184-2193.[CrossRef]
    [Google Scholar]
  52. Huang, Y., Paxton, W. A., Wolinsky, S. M., Neumann, A. U., Zhang, L., He, T., Kang, S., Ceradini, D., Jin, Z., Yazdanbakhsh, K., Kunstman, K., Erickson, D., Dragon, E., Landau, N. R., Phair, J., Ho, D. D. & Koup, R. A. ( 1996; ). The role of a mutant CCR5 allele in HIV-1 transmission and disease progression [see comments]. Nature Medicine 2, 1240-1243.[CrossRef]
    [Google Scholar]
  53. Hwang, S. S., Boyle, T. J., Lyerly, H. K. & Cullen, B. R. ( 1991; ). Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253, 71-74.[CrossRef]
    [Google Scholar]
  54. Ivanoff, L., Looney, D., McDanal, C., Morris, J., Wong-Staal, F., Langlois, A., Petteway, S. & Matthews, T. ( 1991; ). Alteration of HIV-1 infectivity and neutralization by a single amino acid replacement in the V3 loop domain. AIDS Research and Human Retroviruses 7, 595-603.[CrossRef]
    [Google Scholar]
  55. Kajumo, F., Thompson, D. A. D., Guo, Y. & Dragic, T. ( 2000; ). Entry of R5X4 and X4 human immunodeficiency virus type 1 strains is mediated by negatively charged and tyrosine residues in the amino-terminal domain and the second extracellular loop of CXCR4. Virology 271, 240-247.[CrossRef]
    [Google Scholar]
  56. Kuhmann, S. E., Platt, E. J., Kozak, S. L. & Kabat, D. ( 1997; ). Polymorphisms in the CCR5 genes of African green monkeys and mice implicate specific amino acids in infections by simian and human immunodeficiency viruses. Journal of Virology 71, 8642-8656.
    [Google Scholar]
  57. Kuhmann, S. E., Platt, E. J., Kozak, S. L. & Kabat, D. ( 2000; ). Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. Journal of Virology 74, 7005-7015.[CrossRef]
    [Google Scholar]
  58. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J. & Hendrickson, W. A. ( 1998; ). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody [see comments]. Nature 393, 648-659.[CrossRef]
    [Google Scholar]
  59. Kwong, P. D., Wyatt, R., Sattentau, Q. J., Sodroski, J. & Hendrickson, W. A. ( 2000; ). Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. Journal of Virology 74, 1961-1972.[CrossRef]
    [Google Scholar]
  60. Labrosse, B., Brelot, A., Heveker, N., Sol, N., Schols, D., De Clercq, E. & Alizon, M. ( 1998; ). Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. Journal of Virology 72, 6381-6388.
    [Google Scholar]
  61. Lapham, C. K., Ouyang, J., Chandrasekhar, B., Nguyen, N. Y., Dimitrov, D. S. & Golding, H. ( 1996; ). Evidence for cell-surface association between fusin and the CD4–gp120 complex in human cell lines [see comments]. Science 274, 602-605.[CrossRef]
    [Google Scholar]
  62. Lee, B., Sharron, M., Blanpain, C., Doranz, B. J., Vakili, J., Setoh, P., Berg, E., Liu, G., Guy, H. R., Durell, S. R., Parmentier, M., Chang, C. N., Price, K., Tsang, M. & Doms, R. W. ( 1999; ). Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. Journal of Biological Chemistry 274, 9617-9626.[CrossRef]
    [Google Scholar]
  63. Lu, Z., Berson, J. F., Chen, Y., Turner, J. D., Zhang, T., Sharron, M., Jenks, M. H., Wang, Z., Kim, J., Rucker, J., Hoxie, J. A., Peiper, S. C. & Doms, R. W. ( 1997; ). Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proceedings of the National Academy of Sciences, USA 94, 6426-6431.[CrossRef]
    [Google Scholar]
  64. McKnight, A., Wilkinson, D., Simmons, G., Talbot, S., Picard, L., Ahuja, M., Marsh, M., Hoxie, J. A. & Clapham, P. R. ( 1997; ). Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. Journal of Virology 71, 1692-1696.
    [Google Scholar]
  65. Menzo, S., Sampaolesi, R., Vicenzi, E., Santagostino, E., Liuzzi, G., Chirianni, A., Piazza, M., Cohen, O. J., Bagnarelli, P. & Clementi, M. ( 1998; ). Rare mutations in a domain crucial for V3-loop structure prevail in replicating HIV from long-term non-progressors. AIDS 12, 985-997.[CrossRef]
    [Google Scholar]
  66. Meyer, L., Magierowska, M., Hubert, J. B., Rouzioux, C., Deveau, C., Sanson, F., Debre, P., Delfraissy, J. F. & Theodorou, I. ( 1997; ). Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: relationship with viral load. The SEROCO Study Group. AIDS 11, 73-78.[CrossRef]
    [Google Scholar]
  67. Michael, N. L. & Moore, J. P. ( 1999; ). HIV-1 entry inhibitors: evading the issue [news]. Nature Medicine 5, 740-742.[CrossRef]
    [Google Scholar]
  68. Michael, N. L., Louie, L. G., Rohrbaugh, A. L., Schultz, K. A., Dayhoff, D. E., Wang, C. E. & Sheppard, H. W. ( 1997; ). The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression [see comments]. Nature Medicine 3, 1160-1162.[CrossRef]
    [Google Scholar]
  69. Moore, J. P. & Nara, P. L. ( 1991; ). The role of the V3 domain of gp120 in HIV infection. AIDS 5 (suppl. 2), 21–33.
    [Google Scholar]
  70. Moore, J. P., Jameson, B. A., Weiss, R. A. & Sattentau, Q. J. (1993). The HIV–cell fusion reaction. In Viral Fusion Mechanisms, pp. 233–289. Edited by J. Bentz. Boca Raton: CRC Press.
  71. Morris, J. F., Sternberg, E. J., Gutshall, L., Petteway, S. R.Jr & Ivanoff, L. A. ( 1994; ). Effect of a single amino acid substitution in the V3 domain of the human immunodeficiency virus type 1: generation of revertant viruses to overcome defects in infectivity in specific cell types. Journal of Virology 68, 8380-8385.
    [Google Scholar]
  72. Murakami, T., Nakajima, T., Koyanagi, Y., Tachibana, K., Fujii, N., Tamamura, H., Yoshida, N., Waki, M., Matsumoto, A., Yoshie, O., Kishimoto, T., Yamamoto, N. & Nagasawa, T. ( 1997; ). A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. Journal of Experimental Medicine 186, 1389-1393.[CrossRef]
    [Google Scholar]
  73. Murakami, T., Zhang, T. Y., Koyanagi, Y., Tanaka, Y., Kim, J., Suzuki, Y., Minoguchi, S., Tamamura, H., Waki, M., Matsumoto, A., Fujii, N., Shida, H., Hoxie, J. A., Peiper, S. C. & Yamamoto, N. ( 1999; ). Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection. Journal of Virology 73, 7489-7496.
    [Google Scholar]
  74. Myszka, D. G., Sweet, R. W., Hensley, P., Brigham-Burke, M., Kwong, P. D., Hendrickson, W. A., Wyatt, R., Sodroski, J. & Doyle, M. L. ( 2000; ). Energetics of the HIV gp120-CD4 binding reaction. Proceedings of the National Academy of Sciences, USA 97, 9026-9031.[CrossRef]
    [Google Scholar]
  75. O’Brien, W. A., Sumner-Smith, M., Mao, S. H., Sadeghi, S., Zhao, J. Q. & Chen, I. S. ( 1996; ). Anti-human immunodeficiency virus type 1 activity of an oligocationic compound mediated via gp120 V3 interactions. Journal of Virology 70, 2825-2831.
    [Google Scholar]
  76. Olson, W. C., Rabut, G. E., Nagashima, K. A., Tran, D. N., Anselma, D. J., Monard, S. P., Segal, J. P., Thompson, D. A., Kajumo, F., Guo, Y., Moore, J. P., Maddon, P. J. & Dragic, T. ( 1999; ). Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. Journal of Virology 73, 4145-4155.
    [Google Scholar]
  77. Page, K., Stearns, S. & Littman, D. ( 1992; ). Analysis of mutations in the V3 domain of gp160 that affect fusion and infectivity. Journal of Virology 66, 524-533.
    [Google Scholar]
  78. Parolin, C., Borsetti, A., Choe, H., Farzan, M., Kolchinsky, P., Heesen, M., Ma, Q., Gerard, C., Palu, G., Dorf, M. E., Springer, T. & Sodroski, J. ( 1998; ). Use of murine CXCR-4 as a second receptor by some T-cell-tropic human immunodeficiency viruses. Journal of Virology 72, 1652-1656.
    [Google Scholar]
  79. Picard, L., Simmons, G., Power, C. A., Meyer, A., Weiss, R. A. & Clapham, P. R. ( 1997; ). Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion. Journal of Virology 71, 5003-5011.
    [Google Scholar]
  80. Rabut, G. E., Konner, J. A., Kajumo, F., Moore, J. P. & Dragic, T. ( 1998; ). Alanine substitutions of polar and nonpolar residues in the amino-terminal domain of CCR5 differently impair entry of macrophage- and dualtropic isolates of human immunodeficiency virus type 1. Journal of Virology 72, 3464-3468.
    [Google Scholar]
  81. Reeves, J. D., Heveker, N., Brelot, A., Alizon, M., Clapham, P. R. & Picard, L. ( 1998; ). The second extracellular loop of CXCR4 is involved in CD4-independent entry of human immunodeficiency virus type 2. Journal of General Virology 79, 1793-1799.
    [Google Scholar]
  82. Rizzuto, C. D., Wyatt, R., Hernandez-Ramos, N., Sun, Y., Kwong, P. D., Hendrickson, W. A. & Sodroski, J. ( 1998; ). A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding [see comments]. Science 280, 1949-1953.[CrossRef]
    [Google Scholar]
  83. Ross, T. M., Bieniasz, P. D. & Cullen, B. R. ( 1998; ). Multiple residues contribute to the inability of murine CCR-5 to function as a coreceptor for macrophage-tropic human immunodeficiency virus type 1 isolates. Journal of Virology 72, 1918-1924.
    [Google Scholar]
  84. Rucker, J., Samson, M., Doranz, B. J., Libert, F., Berson, J. F., Yi, Y., Smyth, R. J., Collman, R. G., Broder, C. C., Vassart, G., Doms, R. W. & Parmentier, M. ( 1996; ). Regions in beta-chemokine receptors CCR5 and CCR2b that determine HIV-1 cofactor specificity. Cell 87, 437-446.[CrossRef]
    [Google Scholar]
  85. Schols, D., Este, J. A., Henson, G. & De Clercq, E. ( 1997a; ). Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Research 35, 147-156.[CrossRef]
    [Google Scholar]
  86. Schols, D., Struyf, S., Van Damme, J., Este, J. A., Henson, G. & De Clercq, E. ( 1997b; ). Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. Journal of Experimental Medicine 186, 1383-1388.[CrossRef]
    [Google Scholar]
  87. Schols, D., Este, J. A., Cabrera, C. & De Clercq, E. ( 1998; ). T-cell-line-tropic human immunodeficiency virus type 1 that is made resistant to stromal cell-derived factor 1alpha contains mutations in the envelope gp120 but does not show a switch in coreceptor use. Journal of Virology 72, 4032-4037.
    [Google Scholar]
  88. Shioda, T., Levy, J. A. & Cheng-Mayer, C. ( 1992; ). Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 89, 9434-9438.[CrossRef]
    [Google Scholar]
  89. Siciliano, S. J., Kuhmann, S. E., Weng, Y., Madani, N., Springer, M. S., Lineberger, J. E., Danzeisen, R., Miller, M. D., Kavanaugh, M. P., DeMartino, J. A. & Kabat, D. ( 1999; ). A critical site in the core of the CCR5 chemokine receptor required for binding and infectivity of human immunodeficiency virus type 1. Journal of Biological Chemistry 274, 1905-1913.[CrossRef]
    [Google Scholar]
  90. Simmons, G., Wilkinson, D., Reeves, J. D., Dittmar, M. T., Beddows, S., Weber, J., Carnegie, G., Desselberger, U., Gray, P. W., Weiss, R. A. & Clapham, P. R. ( 1996; ). Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. Journal of Virology 70, 8355-8360.
    [Google Scholar]
  91. Strizki, J. M., Turner, J. D., Collman, R. G., Hoxie, J. & Gonzalez-Scarano, F. ( 1997; ). A monoclonal antibody (12G5) directed against CXCR-4 inhibits infection with the dual-tropic human immunodeficiency virus type 1 isolate HIV-1(89·6) but not the T-tropic isolate HIV-1(HxB). Journal of Virology 71, 5678-5683.
    [Google Scholar]
  92. Tamamura, H., Imai, M., Ishihara, T., Masuda, M., Funakoshi, H., Oyake, H., Murakami, T., Arakaki, R., Nakashima, H., Otaka, A., Ibuka, T., Waki, M., Matsumoto, A., Yamamoto, N. & Fujii, N. ( 1998a; ). Pharmacophore identification of a chemokine receptor (CXCR4) antagonist, T22 ([Tyr(5,12),Lys7]-polyphemusin II), which specifically blocks T cell-line-tropic HIV-1 infection. Bioorganic and Medicinal Chemistry 6, 1033-1041.[CrossRef]
    [Google Scholar]
  93. Tamamura, H., Xu, Y., Hattori, T., Zhang, X., Arakaki, R., Kanbara, K., Omagari, A., Otaka, A., Ibuka, T., Yamamoto, N., Nakashima, H. & Fujii, N. ( 1998b; ). A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Biochemical and Biophysical Research Communications 253, 877-882.[CrossRef]
    [Google Scholar]
  94. Tarasova, N. I., Rice, W. G. & Michejda, C. J. ( 1999; ). Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interactions. Journal of Biological Chemistry 274, 34911-34915.[CrossRef]
    [Google Scholar]
  95. Trkola, A., Dragic, T., Arthos, J., Binley, J., Olson, W., Allaway, G., Cheng-Mayer, C., Robinson, J., Maddon, P. & Moore, J. ( 1996; ). CD4-dependent, antibody sensitive interactions between HIV-1 and its co-receptor CCR5. Nature 384, 184-186.[CrossRef]
    [Google Scholar]
  96. Trkola, A., Paxton, W. A., Monard, S. P., Hoxie, J. A., Siani, M. A., Thompson, D. A., Wu, L., Mackay, C. R., Horuk, R. & Moore, J. P. ( 1998; ). Genetic subtype-independent inhibition of human immunodeficiency virus type 1 replication by CC and CXC chemokines. Journal of Virology 72, 396-404.
    [Google Scholar]
  97. Verrier, F., Borman, A. M., Brand, D. & Girard, M. ( 1999; ). Role of the HIV type 1 glycoprotein 120 V3 loop in determining coreceptor usage. AIDS Research and Human Retroviruses 15, 731-743.[CrossRef]
    [Google Scholar]
  98. Wang, Z. X., Berson, J. F., Zhang, T. Y., Cen, Y. H., Sun, Y., Sharron, M., Lu, Z. H. & Peiper, S. C. ( 1998; ). CXCR4 sequences involved in coreceptor determination of human immunodeficiency virus type-1 tropism. Unmasking of activity with M-tropic Env glycoproteins. Journal of Biological Chemistry 273, 15007-15015.[CrossRef]
    [Google Scholar]
  99. Wang, W. K., Dudek, T., Essex, M. & Lee, T. H. ( 1999a; ). Hypervariable region 3 residues of HIV type 1 gp120 involved in CCR5 coreceptor utilization: therapeutic and prophylactic implications. Proceedings of the National Academy of Sciences, USA 96, 4558-4562.[CrossRef]
    [Google Scholar]
  100. Wang, Z., Lee, B., Murray, J. L., Bonneau, F., Sun, Y., Schweickart, V., Zhang, T. & Peiper, S. C. ( 1999b; ). CCR5 HIV-1 coreceptor activity. Journal of Biological Chemistry 274, 28413-28419.[CrossRef]
    [Google Scholar]
  101. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. ( 1997; ). Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426-430.[CrossRef]
    [Google Scholar]
  102. Willett, B. J., Adema, K., Heveker, N., Brelot, A., Picard, L., Alizon, M., Turner, J. D., Hoxie, J. A., Peiper, S., Neil, J. C. & Hosie, M. J. ( 1998; ). The second extracellular loop of CXCR4 determines its function as a receptor for feline immunodeficiency virus. Journal of Virology 72, 6475–6481; erratum 8460.
    [Google Scholar]
  103. Wu, L., Gerard, N. P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A. A., Desjardin, E., Newman, W., Gerard, C. & Sodroski, J. ( 1996; ). CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 [see comments]. Nature 384, 179-183.[CrossRef]
    [Google Scholar]
  104. Wu, H., Kwong, P. D. & Hendrickson, W. A. ( 1997a; ). Dimeric association and segmental variability in the structure of human CD4. Nature 387, 527-530.[CrossRef]
    [Google Scholar]
  105. Wu, L., LaRosa, G., Kassam, N., Gordon, C. J., Heath, H., Ruffing, N., Chen, H., Humblias, J., Samson, M., Parmentier, M., Moore, J. P. & Mackay, C. R. ( 1997b; ). Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. Journal of Experimental Medicine 186, 1373-1381.[CrossRef]
    [Google Scholar]
  106. Wyatt, R. & Sodroski, J. ( 1998; ). The HIV-1 envelope glycoproteins: fusogens, antigens and immunogens. Science 280, 1884-1888.[CrossRef]
    [Google Scholar]
  107. Wyatt, R., Kwong, P. D., Desjardins, E., Sweet, R., Robinson, J., Hendrickson, W. & Sodroski, J. ( 1998; ). The antigenic structure of the human immunodeficiency virus gp120 envelope glycoprotein. Nature 393, 705-710.[CrossRef]
    [Google Scholar]
  108. Xu, Y., Tamamura, H., Arakaki, R., Nakashima, H., Zhang, X., Fujii, N., Uchiyama, T. & Hattori, T. ( 1999; ). Marked increase in anti-HIV activity, as well as inhibitory activity against HIV entry mediated by CXCR4, linked to enhancement of the binding ability of tachyplesin analogs to CXCR4. AIDS Research and Human Retroviruses 15, 419-427.[CrossRef]
    [Google Scholar]
  109. Zhang, Y. J. & Moore, J. P. ( 1999; ). Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry? Journal of Virology 73, 3443-3448.
    [Google Scholar]
  110. Zhang, L., He, T., Huang, Y., Chen, Z., Guo, Y., Wu, S., Kunstman, K. J., Brown, R. C., Phair, J. P., Neumann, A. U., Ho, D. D. & Wolinsky, S. M. ( 1998; ). Chemokine coreceptor usage by diverse primary isolates of human immunodeficiency virus type 1. Journal of Virology 72, 9307-9312.
    [Google Scholar]
  111. Zhang, Y., Lou, B., Lal, R. B., Gettie, A., Marx, P. A. & Moore, J. P. ( 2000; ). Use of inhibitors to evaluate coreceptor usage by simian and simian/human immunodeficiency viruses and human immunodeficiency virus type 2 in primary cells. Journal of Virology 74, 6893-6910.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-8-1807
Loading

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error