1887

Abstract

Papillomaviruses contain a gene, E5, that encodes a short hydrophobic polypeptide that has transforming activity. E5 proteins bind to the 16 kDa subunit c (proteolipid) of the eukaryotic vacuolar H-ATPase (V-ATPase) and this binding is thought to disturb the V-ATPase and to be part of transformation. This link has been examined in the yeast . The E5 proteins from human papillomavirus (HPV) type 16, bovine papillomavirus (BPV) type 1, BPV-4 E5 and various mutants of E5 and the p12′ polypeptide from human T-lymphotropic virus (HTLV) type I all bound to the subunit c (Vma3p) and could be found in vacuolar membranes. However, none affected the activity of the V-ATPase. In contrast, a dominant-negative mutant of Vma3p (E137G) inactivated the enzyme and gave the characteristic VMA phenotype. A hybrid V-ATPase containing a subunit c from Norway lobster also showed no disruption. Sedimentation showed that HPV-16 E5 was not part of the active V-ATPase. It is concluded that the binding of E5 and E5-related proteins to subunit c does not affect V-ATPase activity or function and it is proposed that the binding may be due to a chaperone function of subunit c.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-10-2353
2001-10-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/10/0822353a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-10-2353&mimeType=html&fmt=ahah

References

  1. Adam J. L., Briggs M. W., McCance D. J.. 2000; A mutagenic analysis of the E5 protein of human papillomavirus type 16 reveals that E5 binding to the vacuolar H+-ATPase is not sufficient for biological activity, using mammalian and yeast expression systems. Virology272:315–325
    [Google Scholar]
  2. Andresson T., Sparkowski J., Goldstein D. J., Schlegel R.. 1995; Vacuolar H+-ATPase mutants transform cells and define a binding site for the papillomavirus E5 oncoprotein. Journal of Biological Chemistry270:6830–6837
    [Google Scholar]
  3. Ashrafi G. H., Pitts J. D., Faccini A., McLean P., O’Brien V., Finbow M. E., Campo M. S.. 2000; Binding of bovine papillomavirus type 4 E8 to ductin (16K proteolipid), down-regulation of gap junction intercellular communication and full cell transformation are independent events. Journal of General Virology81:689–694
    [Google Scholar]
  4. Bergman P., Ustav M., Sedman J., Moreno-Lopez J., Vennstrom B., Pettersson U.. 1988; The E5 gene of bovine papillomavirus type 1 is sufficient for complete oncogenic transformation of mouse fibroblasts. Oncogene2:453–459
    [Google Scholar]
  5. Breckenridge L. J., Almers W.. 1987; Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature328:814–817
    [Google Scholar]
  6. Briggs M. W., Adam J. L., McCance D. J.. 2001; The human papillomavirus type 16 E5 protein alters vacuolar H+-ATPase function and stability in Saccharomyces cerevisiae. Virology280169–175
    [Google Scholar]
  7. Conrad M., Bubb V. J., Schlegel R.. 1993; The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. Journal of Virology67:6170–6178
    [Google Scholar]
  8. DiMaio D., Guralski D., Schiller J. T.. 1986; Translation of open reading frame E5 of bovine papillomavirus is required for its transforming activity. Proceedings of the National Academy of Sciences, USA83:1797–1801
    [Google Scholar]
  9. Dunlop J., Jones P. C., Finbow M. E.. 1995; Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. EMBO Journal14:3609–3616
    [Google Scholar]
  10. Faccini A. M., Cairney M., Ashrafi G. H., Finbow M. E., Campo M. S., Pitts J. D.. 1996; The bovine papillomavirus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblasts. Journal of Virology70:9041–9045
    [Google Scholar]
  11. Finbow M. E., Harrison M. A.. 1997; The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochemical Journal324:697–712
    [Google Scholar]
  12. Finbow M. E., Pitts J. D., Goldstein D. J., Schlegel R., Findlay J. B. C.. 1991; The E5 oncoprotein target: a 16-kDa channel-forming protein with diverse functions. Molecular Carcinogenesis4:441–444
    [Google Scholar]
  13. Finbow M. E., Eliopoulos E. E., Jackson P. J., Keen J. N., Meagher L., Thompson P., Jones P., Findlay J. B. C.. 1992; Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H+-ATPase. Protein Engineering5:7–15
    [Google Scholar]
  14. Finbow M. E., Harrison M. A., Jones P.. 1995; Ductin – a proton pump component, a gap junction channel and a neurotransmitter release channel. Bioessays17:247–255
    [Google Scholar]
  15. Franchini G., Mulloy J. C., Koralnik I. J., Lo Monico A., Sparkowski J. J., Andresson T., Goldstein D. J., Schlegel R.. 1993; The human T-cell leukemia/lymphotropic virus type I p12I protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase. Journal of Virology67:7701–7704
    [Google Scholar]
  16. Goldstein D. J., Finbow M. E., Andresson T., McLean P., Smith K., Bubb V., Schlegel R.. 1991; Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H+-ATPases. Nature352:347–349
    [Google Scholar]
  17. Goldstein D. J., Kulke R., Dimaio D., Schlegel R.. 1992a; A glutamine residue in the membrane-associating domain of the bovine papillomavirus type 1 E5 oncoprotein mediates its binding to a transmembrane component of the vacuolar H+-ATPase. Journal of Virology66:405–413
    [Google Scholar]
  18. Goldstein D. J., Toyama R., Dhar R., Schlegel R.. 1992b; The BPV-1 E5 oncoprotein expressed in Schizosaccharomyces pombe exhibits normal biochemical properties and binds to the endogenous 16-kDa component of the vacuolar proton-ATPase. Virology190:889–893
    [Google Scholar]
  19. Goldstein D. J., Li W., Wang L. M., Heidaran M. A., Aaronson S., Shinn R., Schlegel R., Pierce J. H.. 1994; The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for the platelet-derived growth factor but not other related tyrosine kinase-containing receptors to induce cellular transformation. Journal of Virology68:4432–4441
    [Google Scholar]
  20. Graham L. A., Hill K. J., Stevens T. H.. 1998; Assembly of the yeast vacuolar H+ATPase occurs in the endoplasmic reticulum and requires a Vma12p/Vma22p assembly complex. Journal of Cell Biology142:39–49
    [Google Scholar]
  21. Harrison M. A., Jones P. C., Kim Y.-I., Finbow M. E., Findlay J. B. C.. 1994; Functional properties of a hybrid vacuolar H+-ATPase in Saccharomyces cells expressing the Nephrops 16-kDa proteolipid. European Journal of Biochemistry221:111–120
    [Google Scholar]
  22. Harrison M. A., Finbow M. E., Findlay J. B. C.. 1997; Postulate for the molecular mechanism of the vacuolar H+-ATPase (hypothesis). Molecular Membrane Biology14:1–3
    [Google Scholar]
  23. Harrison M. A., Murray J., Powell B., Kim Y.-I., Finbow M. E., Findlay J. B. C.. 1999; Helical interactions and membrane disposition of the 16-kDa proteolipid subunit of the vacuolar H+-ATPase analyzed by cysteine replacement mutagenesis. Journal of Biological Chemistry274:25461–25470
    [Google Scholar]
  24. Harrison M., Powell B., Finbow M. E., Findlay J. B. C.. 2000; Identification of lipid-accessible sites on the Nephrops 16-kDa proteolipid incorporated into a hybrid vacuolar H+-ATPase: site-directed labeling with N -(1-pyrenyl)cyclohexylcarbodiimide and fluorescence quenching analysis. Biochemistry39:7531–7537
    [Google Scholar]
  25. Horwitz B. H., Burkhardt A. L., Schlegel R., DiMaio D.. 1988; 44-amino-acid E5 transforming protein of bovine papillomavirus requires a hydrophobic core and specific carboxyl-terminal amino acids. Molecular and Cellular Biology8:4071–4078
    [Google Scholar]
  26. Hughes G., Harrison M. A., Kim Y.-I., Griffiths D. E., Finbow M. E., Findlay J. B. C.. 1996; Interaction of dibutyltin-3-hydroxyflavone bromide with the 16 kDa proteolipid indicates the disposition of proton translocation sites of the vacuolar ATPase. Biochemical Journal317:425–431
    [Google Scholar]
  27. Hwang E. S., Nottoli T., Dimaio D.. 1995; The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology211:227–233
    [Google Scholar]
  28. Jones P. C., Harrison M. A., Kim Y.-I., Finbow M. E., Findlay J. B. C.. 1995; The first putative transmembrane helix of the 16 kDa proteolipid lines a pore in the V0 sector of the vacuolar H+-ATPase. Biochemical Journal312:739–747
    [Google Scholar]
  29. Leechanachai P., Banks L., Moreau F., Matlashewski G.. 1992; The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene7:19–25
    [Google Scholar]
  30. Leitch B., Finbow M.. 1990; The gap junction-like form of a vacuolar proton channel component appears not to be an artefact of isolation: an immunocytochemical localization study. Experimental Cell Research190:218–226
    [Google Scholar]
  31. Leptak C., Ramon y Cajal S., Kulke R., Horwitz B. H., Riese D. J.II., Dotto G. P., DiMaio D.. 1991; Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. Journal of Virology65:7078–7083
    [Google Scholar]
  32. Martin P., Vass W. C., Schiller J. T., Lowy D. R., Velu T. J.. 1989; The bovine papillomavirus E5 transforming protein can stimulate the transforming activity of EGF and CSF-1 receptors. Cell59:21–32
    [Google Scholar]
  33. Mulloy J. C., Crownley R. W., Fullen J., Leonard W. J., Franchini G.. 1996; The human T-cell leukemia/lymphotropic virus type 1 p12I proteins bind the interleukin-2 receptor beta and gamma chains and affects their expression on the cell surface. Journal of Virology70:3599–3605
    [Google Scholar]
  34. O’Brien V., Ashrafi G. H., Grindlay G. J., Anderson R., Campo M. S.. 1999; A mutational analysis of the transforming functions of the E8 protein of bovine papillomavirus type 4. Virology255:385–394
    [Google Scholar]
  35. Oelze I., Kartenbeck J., Crusius K., Alonso A.. 1995; Human papillomavirus type 16 E5 protein affects cell–cell communication in an epithelial cell line. Journal of Virology69:4489–4494
    [Google Scholar]
  36. Páli T., Finbow M. E., Marsh D.. 1999; Membrane assembly of the 16-kDa proteolipid channel from Nephrops norvegicus studied by relaxation enhancements in spin-label ESR. Biochemistry38:14311–14319
    [Google Scholar]
  37. Parra K. J., Kane P. M.. 1998; Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Molecular and Cellular Biology18:7064–7074
    [Google Scholar]
  38. Pennie W. D., Grindlay G. J., Cairney M., Campo M. S.. 1993; Analysis of the transforming functions of bovine papillomavirus type 4. Virology193:614–620
    [Google Scholar]
  39. Peters C., Bayer M. J., Buhler S., Andersen J. S., Mann M., Mayer A.. 2001; Trans -complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature409:581–588
    [Google Scholar]
  40. Petti L., DiMaio D.. 1994; Specific interaction between the bovine papillomavirus E5 transforming protein and the beta receptor for platelet-derived growth factor in stably transformed and acutely transfected cells. Journal of Virology68:3582–3592
    [Google Scholar]
  41. Petti L., Nilson L. A., DiMaio D.. 1991; Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO Journal10:845–855
    [Google Scholar]
  42. Pim D., Collins M., Banks L.. 1992; Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene7:27–32
    [Google Scholar]
  43. Rastogi V. K., Girvin M. E.. 1999; Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature402:263–268
    [Google Scholar]
  44. Rodriguez M. I., Finbow M. E., Alonso A.. 2000; Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor overactivation. Oncogene19:3727–3732
    [Google Scholar]
  45. Saito T., Schlegel R., Andresson T., Yuge L., Yamamoto M., Yamasaki H.. 1998; Induction of cell transformation by mutated 16K vacuolar H+-ATPase (ductin) is accompanied by down-regulation of gap junctional intercellular communication and translocation of connexin 43 in NIH3T3 cells. Oncogene17:1673–1680
    [Google Scholar]
  46. Schapiro F., Sparkowski J., Adduci A., Suprynowicz F., Schlegel R., Grinstein S.. 2000; Golgi alkalinization by the papillomavirus E5 oncoprotein. Journal of Cell Biology148:305–315
    [Google Scholar]
  47. Schiller J. T., Vass W. C., Vousden K. H., Lowy D. R.. 1986; E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene. Journal of Virology57:1–6
    [Google Scholar]
  48. Sherman F.. 1991; Getting started with yeast. Methods in Enzymology194:3–21
    [Google Scholar]
  49. Sparkowski J., Anders J., Schlegel R.. 1995; E5 oncoprotein retained in the endoplasmic reticulum/cis Golgi still induces PDGF receptor autophosphorylation but does not transform cells. EMBO Journal14:3055–3063
    [Google Scholar]
  50. Straight S. W., Herman B., McCance D. J.. 1995; The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. Journal of Virology69:3185–3192
    [Google Scholar]
  51. Uchida E., Ohsumi Y., Anraku Y.. 1985; Purification and properties of the H+ translocating, Mg2+ adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. Journal of Biological Chemistry260:1090–1095
    [Google Scholar]
  52. Umemoto N., Ohya Y., Anraku Y.. 1991; VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H+-ATPase activity. Journal of Biological Chemistry266:24526–24532
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-10-2353
Loading
/content/journal/jgv/10.1099/0022-1317-82-10-2353
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error