1887

Abstract

Papillomaviruses contain a gene, E5, that encodes a short hydrophobic polypeptide that has transforming activity. E5 proteins bind to the 16 kDa subunit c (proteolipid) of the eukaryotic vacuolar H-ATPase (V-ATPase) and this binding is thought to disturb the V-ATPase and to be part of transformation. This link has been examined in the yeast . The E5 proteins from human papillomavirus (HPV) type 16, bovine papillomavirus (BPV) type 1, BPV-4 E5 and various mutants of E5 and the p12′ polypeptide from human T-lymphotropic virus (HTLV) type I all bound to the subunit c (Vma3p) and could be found in vacuolar membranes. However, none affected the activity of the V-ATPase. In contrast, a dominant-negative mutant of Vma3p (E137G) inactivated the enzyme and gave the characteristic VMA phenotype. A hybrid V-ATPase containing a subunit c from Norway lobster also showed no disruption. Sedimentation showed that HPV-16 E5 was not part of the active V-ATPase. It is concluded that the binding of E5 and E5-related proteins to subunit c does not affect V-ATPase activity or function and it is proposed that the binding may be due to a chaperone function of subunit c.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-10-2353
2001-10-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/10/0822353a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-10-2353&mimeType=html&fmt=ahah

References

  1. Adam, J. L., Briggs, M. W. & McCance, D. J. ( 2000; ). A mutagenic analysis of the E5 protein of human papillomavirus type 16 reveals that E5 binding to the vacuolar H+-ATPase is not sufficient for biological activity, using mammalian and yeast expression systems. Virology 272, 315-325.[CrossRef]
    [Google Scholar]
  2. Andresson, T., Sparkowski, J., Goldstein, D. J. & Schlegel, R. ( 1995; ). Vacuolar H+-ATPase mutants transform cells and define a binding site for the papillomavirus E5 oncoprotein. Journal of Biological Chemistry 270, 6830-6837.[CrossRef]
    [Google Scholar]
  3. Ashrafi, G. H., Pitts, J. D., Faccini, A., McLean, P., O’Brien, V., Finbow, M. E. & Campo, M. S. ( 2000; ). Binding of bovine papillomavirus type 4 E8 to ductin (16K proteolipid), down-regulation of gap junction intercellular communication and full cell transformation are independent events. Journal of General Virology 81, 689-694.
    [Google Scholar]
  4. Bergman, P., Ustav, M., Sedman, J., Moreno-Lopez, J., Vennstrom, B. & Pettersson, U. ( 1988; ). The E5 gene of bovine papillomavirus type 1 is sufficient for complete oncogenic transformation of mouse fibroblasts. Oncogene 2, 453-459.
    [Google Scholar]
  5. Breckenridge, L. J. & Almers, W. ( 1987; ). Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328, 814-817.[CrossRef]
    [Google Scholar]
  6. Briggs, M. W., Adam, J. L. & McCance, D. J. ( 2001; ). The human papillomavirus type 16 E5 protein alters vacuolar H+-ATPase function and stability in Saccharomyces cerevisiae. Virology 280, 169-175.[CrossRef]
    [Google Scholar]
  7. Conrad, M., Bubb, V. J. & Schlegel, R. ( 1993; ). The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. Journal of Virology 67, 6170-6178.
    [Google Scholar]
  8. DiMaio, D., Guralski, D. & Schiller, J. T. ( 1986; ). Translation of open reading frame E5 of bovine papillomavirus is required for its transforming activity. Proceedings of the National Academy of Sciences, USA 83, 1797-1801.[CrossRef]
    [Google Scholar]
  9. Dunlop, J., Jones, P. C. & Finbow, M. E. ( 1995; ). Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. EMBO Journal 14, 3609-3616.
    [Google Scholar]
  10. Faccini, A. M., Cairney, M., Ashrafi, G. H., Finbow, M. E., Campo, M. S. & Pitts, J. D. ( 1996; ). The bovine papillomavirus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblasts. Journal of Virology 70, 9041-9045.
    [Google Scholar]
  11. Finbow, M. E. & Harrison, M. A. ( 1997; ). The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochemical Journal 324, 697-712.
    [Google Scholar]
  12. Finbow, M. E., Pitts, J. D., Goldstein, D. J., Schlegel, R. & Findlay, J. B. C. ( 1991; ). The E5 oncoprotein target: a 16-kDa channel-forming protein with diverse functions. Molecular Carcinogenesis 4, 441-444.[CrossRef]
    [Google Scholar]
  13. Finbow, M. E., Eliopoulos, E. E., Jackson, P. J., Keen, J. N., Meagher, L., Thompson, P., Jones, P. & Findlay, J. B. C. ( 1992; ). Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H+-ATPase. Protein Engineering 5, 7-15.[CrossRef]
    [Google Scholar]
  14. Finbow, M. E., Harrison, M. A. & Jones, P. ( 1995; ). Ductin – a proton pump component, a gap junction channel and a neurotransmitter release channel. Bioessays 17, 247-255.[CrossRef]
    [Google Scholar]
  15. Franchini, G., Mulloy, J. C., Koralnik, I. J., Lo Monico, A., Sparkowski, J. J., Andresson, T., Goldstein, D. J. & Schlegel, R. ( 1993; ). The human T-cell leukemia/lymphotropic virus type I p12I protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase. Journal of Virology 67, 7701-7704.
    [Google Scholar]
  16. Goldstein, D. J., Finbow, M. E., Andresson, T., McLean, P., Smith, K., Bubb, V. & Schlegel, R. ( 1991; ). Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H+-ATPases. Nature 352, 347-349.[CrossRef]
    [Google Scholar]
  17. Goldstein, D. J., Kulke, R., Dimaio, D. & Schlegel, R. ( 1992a; ). A glutamine residue in the membrane-associating domain of the bovine papillomavirus type 1 E5 oncoprotein mediates its binding to a transmembrane component of the vacuolar H+-ATPase. Journal of Virology 66, 405-413.
    [Google Scholar]
  18. Goldstein, D. J., Toyama, R., Dhar, R. & Schlegel, R. ( 1992b; ). The BPV-1 E5 oncoprotein expressed in Schizosaccharomyces pombe exhibits normal biochemical properties and binds to the endogenous 16-kDa component of the vacuolar proton-ATPase. Virology 190, 889-893.[CrossRef]
    [Google Scholar]
  19. Goldstein, D. J., Li, W., Wang, L. M., Heidaran, M. A., Aaronson, S., Shinn, R., Schlegel, R. & Pierce, J. H. ( 1994; ). The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for the platelet-derived growth factor but not other related tyrosine kinase-containing receptors to induce cellular transformation. Journal of Virology 68, 4432-4441.
    [Google Scholar]
  20. Graham, L. A., Hill, K. J. & Stevens, T. H. ( 1998; ). Assembly of the yeast vacuolar H+ATPase occurs in the endoplasmic reticulum and requires a Vma12p/Vma22p assembly complex. Journal of Cell Biology 142, 39-49.[CrossRef]
    [Google Scholar]
  21. Harrison, M. A., Jones, P. C., Kim, Y.-I., Finbow, M. E. & Findlay, J. B. C. ( 1994; ). Functional properties of a hybrid vacuolar H+-ATPase in Saccharomyces cells expressing the Nephrops 16-kDa proteolipid. European Journal of Biochemistry 221, 111-120.[CrossRef]
    [Google Scholar]
  22. Harrison, M. A., Finbow, M. E. & Findlay, J. B. C. ( 1997; ). Postulate for the molecular mechanism of the vacuolar H+-ATPase (hypothesis). Molecular Membrane Biology 14, 1-3.[CrossRef]
    [Google Scholar]
  23. Harrison, M. A., Murray, J., Powell, B., Kim, Y.-I., Finbow, M. E. & Findlay, J. B. C. ( 1999; ). Helical interactions and membrane disposition of the 16-kDa proteolipid subunit of the vacuolar H+-ATPase analyzed by cysteine replacement mutagenesis. Journal of Biological Chemistry 274, 25461-25470.[CrossRef]
    [Google Scholar]
  24. Harrison, M., Powell, B., Finbow, M. E. & Findlay, J. B. C. ( 2000; ). Identification of lipid-accessible sites on the Nephrops 16-kDa proteolipid incorporated into a hybrid vacuolar H+-ATPase: site-directed labeling with N-(1-pyrenyl)cyclohexylcarbodiimide and fluorescence quenching analysis. Biochemistry 39, 7531-7537.[CrossRef]
    [Google Scholar]
  25. Horwitz, B. H., Burkhardt, A. L., Schlegel, R. & DiMaio, D. ( 1988; ). 44-amino-acid E5 transforming protein of bovine papillomavirus requires a hydrophobic core and specific carboxyl-terminal amino acids. Molecular and Cellular Biology 8, 4071-4078.
    [Google Scholar]
  26. Hughes, G., Harrison, M. A., Kim, Y.-I., Griffiths, D. E., Finbow, M. E. & Findlay, J. B. C. ( 1996; ). Interaction of dibutyltin-3-hydroxyflavone bromide with the 16 kDa proteolipid indicates the disposition of proton translocation sites of the vacuolar ATPase. Biochemical Journal 317, 425-431.
    [Google Scholar]
  27. Hwang, E. S., Nottoli, T. & Dimaio, D. ( 1995; ). The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 211, 227-233.[CrossRef]
    [Google Scholar]
  28. Jones, P. C., Harrison, M. A., Kim, Y.-I., Finbow, M. E. & Findlay, J. B. C. ( 1995; ). The first putative transmembrane helix of the 16 kDa proteolipid lines a pore in the V0 sector of the vacuolar H+-ATPase. Biochemical Journal 312, 739-747.
    [Google Scholar]
  29. Leechanachai, P., Banks, L., Moreau, F. & Matlashewski, G. ( 1992; ). The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7, 19-25.
    [Google Scholar]
  30. Leitch, B. & Finbow, M. ( 1990; ). The gap junction-like form of a vacuolar proton channel component appears not to be an artefact of isolation: an immunocytochemical localization study. Experimental Cell Research 190, 218-226.[CrossRef]
    [Google Scholar]
  31. Leptak, C., Ramon y Cajal, S., Kulke, R., Horwitz, B. H., Riese, D. J.II, Dotto, G. P. & DiMaio, D. ( 1991; ). Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. Journal of Virology 65, 7078-7083.
    [Google Scholar]
  32. Martin, P., Vass, W. C., Schiller, J. T., Lowy, D. R. & Velu, T. J. ( 1989; ). The bovine papillomavirus E5 transforming protein can stimulate the transforming activity of EGF and CSF-1 receptors. Cell 59, 21-32.[CrossRef]
    [Google Scholar]
  33. Mulloy, J. C., Crownley, R. W., Fullen, J., Leonard, W. J. & Franchini, G. ( 1996; ). The human T-cell leukemia/lymphotropic virus type 1 p12I proteins bind the interleukin-2 receptor beta and gamma chains and affects their expression on the cell surface. Journal of Virology 70, 3599-3605.
    [Google Scholar]
  34. O’Brien, V., Ashrafi, G. H., Grindlay, G. J., Anderson, R. & Campo, M. S. ( 1999; ). A mutational analysis of the transforming functions of the E8 protein of bovine papillomavirus type 4. Virology 255, 385-394.[CrossRef]
    [Google Scholar]
  35. Oelze, I., Kartenbeck, J., Crusius, K. & Alonso, A. ( 1995; ). Human papillomavirus type 16 E5 protein affects cell–cell communication in an epithelial cell line. Journal of Virology 69, 4489-4494.
    [Google Scholar]
  36. Páli, T., Finbow, M. E. & Marsh, D. ( 1999; ). Membrane assembly of the 16-kDa proteolipid channel from Nephrops norvegicus studied by relaxation enhancements in spin-label ESR. Biochemistry 38, 14311-14319.[CrossRef]
    [Google Scholar]
  37. Parra, K. J. & Kane, P. M. ( 1998; ). Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Molecular and Cellular Biology 18, 7064-7074.
    [Google Scholar]
  38. Pennie, W. D., Grindlay, G. J., Cairney, M. & Campo, M. S. ( 1993; ). Analysis of the transforming functions of bovine papillomavirus type 4. Virology 193, 614-620.[CrossRef]
    [Google Scholar]
  39. Peters, C., Bayer, M. J., Buhler, S., Andersen, J. S., Mann, M. & Mayer, A. ( 2001; ). Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581-588.[CrossRef]
    [Google Scholar]
  40. Petti, L. & DiMaio, D. ( 1994; ). Specific interaction between the bovine papillomavirus E5 transforming protein and the beta receptor for platelet-derived growth factor in stably transformed and acutely transfected cells. Journal of Virology 68, 3582-3592.
    [Google Scholar]
  41. Petti, L., Nilson, L. A. & DiMaio, D. ( 1991; ). Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO Journal 10, 845-855.
    [Google Scholar]
  42. Pim, D., Collins, M. & Banks, L. ( 1992; ). Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7, 27-32.
    [Google Scholar]
  43. Rastogi, V. K. & Girvin, M. E. ( 1999; ). Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402, 263-268.[CrossRef]
    [Google Scholar]
  44. Rodriguez, M. I., Finbow, M. E. & Alonso, A. ( 2000; ). Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor overactivation. Oncogene 19, 3727-3732.[CrossRef]
    [Google Scholar]
  45. Saito, T., Schlegel, R., Andresson, T., Yuge, L., Yamamoto, M. & Yamasaki, H. ( 1998; ). Induction of cell transformation by mutated 16K vacuolar H+-ATPase (ductin) is accompanied by down-regulation of gap junctional intercellular communication and translocation of connexin 43 in NIH3T3 cells. Oncogene 17, 1673-1680.[CrossRef]
    [Google Scholar]
  46. Schapiro, F., Sparkowski, J., Adduci, A., Suprynowicz, F., Schlegel, R. & Grinstein, S. ( 2000; ). Golgi alkalinization by the papillomavirus E5 oncoprotein. Journal of Cell Biology 148, 305-315.[CrossRef]
    [Google Scholar]
  47. Schiller, J. T., Vass, W. C., Vousden, K. H. & Lowy, D. R. ( 1986; ). E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene. Journal of Virology 57, 1-6.
    [Google Scholar]
  48. Sherman, F. ( 1991; ). Getting started with yeast. Methods in Enzymology 194, 3-21.
    [Google Scholar]
  49. Sparkowski, J., Anders, J. & Schlegel, R. ( 1995; ). E5 oncoprotein retained in the endoplasmic reticulum/cis Golgi still induces PDGF receptor autophosphorylation but does not transform cells. EMBO Journal 14, 3055-3063.
    [Google Scholar]
  50. Straight, S. W., Herman, B. & McCance, D. J. ( 1995; ). The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. Journal of Virology 69, 3185-3192.
    [Google Scholar]
  51. Uchida, E., Ohsumi, Y. & Anraku, Y. ( 1985; ). Purification and properties of the H+ translocating, Mg2+ adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. Journal of Biological Chemistry 260, 1090-1095.
    [Google Scholar]
  52. Umemoto, N., Ohya, Y. & Anraku, Y. ( 1991; ). VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H+-ATPase activity. Journal of Biological Chemistry 266, 24526-24532.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-10-2353
Loading
/content/journal/jgv/10.1099/0022-1317-82-10-2353
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error