1887

Abstract

Varicella-zoster virus (VZV) glycoproteins gH and gL were examined in a recombinant vaccinia virus system. Single expression of glycoprotein gL produced two molecular forms: an 18 kDa form and a 19 kDa form differing in size by one endoglycosidase H-sensitive -linked oligosaccharide. Coexpression of gL and gH resulted in binding of the 18 kDa gL form with the mature form of gH, while the 19 kDa gL form remained uncomplexed. The glycosylation processing of gL was not dependent on gH; however, gL was required for the conversion of precursor gH (97 kDa) to mature gH (118 kDa). Subsequent analyses indicated that gL (18 kDa) was a more completely processed gL (19 kDa). Screening of the culture media revealed that gH and gL were secreted, but only if coexpressed and complexed together. The secreted form of gL was 18 kDa while that of gH was 114 kDa. The fact that secreted gH was smaller than intracytoplasmic gH suggested a proteolytic processing event prior to secretion. The 19 kDa form of gL was never secreted. These findings support a VZV gL recycling pathway between the endoplasmic reticulum and the -Golgi apparatus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-6-1545
2000-06-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/6/0811545a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-6-1545&mimeType=html&fmt=ahah

References

  1. Anderson, R. A., Liu, D. X. & Gompels, U. A. (1996). Definition of a human herpesvirus-6 betaherpesvirus-specific domain in glycoprotein gH that governs interaction with glycoprotein gL: substitution of human cytomegalovirus glycoproteins permits group-specific complex formation.Virology 217, 517-526.[CrossRef] [Google Scholar]
  2. Boyle, D. B. & Coupar, B. E. (1988). A dominant selectable marker for the construction of recombinant poxviruses.Gene 65, 123-128.[CrossRef] [Google Scholar]
  3. Davison, A. J. & Moss, B. (1990). New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins.Nucleic Acids Research 18, 4285-4286.[CrossRef] [Google Scholar]
  4. Davison, A. J. & Scott, J. E. (1986). The complete DNA sequence of varicella-zoster virus.Journal of General Virology 67, 1759-1816.[CrossRef] [Google Scholar]
  5. Dubin, G. & Jiang, H. (1995). Expression of herpes simplex virus type 1 glycoprotein L (gL) in transfected mammalian cells: evidence that gL is not independently anchored to cell membranes.Journal of Virology 69, 4564-4568. [Google Scholar]
  6. Duus, K. M. & Grose, C. (1996). Multiple regulatory effects of varicella-zoster virus (VZV) gL on trafficking patterns and fusogenic properties of VZV gH.Journal of Virology 70, 8961-8971. [Google Scholar]
  7. Duus, K. M., Hatfield, C. & Grose, C. (1995). Cell surface expression and fusion by the varicella-zoster virus gH:gL glycoprotein complex: analysis by laser scanning confocal microscopy.Virology 210, 429-440.[CrossRef] [Google Scholar]
  8. Ecker, J. R. & Hyman, R. W. (1982). Varicella zoster virus DNA exists as two isomers.Proceedings of the National Academy of Sciences, USA 79, 156-160.[CrossRef] [Google Scholar]
  9. Forghani, B., Ni, L. & Grose, C. (1994). Neutralization epitope of the varicella-zoster virus gH:gL glycoprotein complex.Virology 199, 458-462.[CrossRef] [Google Scholar]
  10. Forrester, A., Farrell, H., Wilkinson, G., Kaye, J., Davis, P. N. & Minson, T. (1992). Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted.Journal of Virology 66, 341-348. [Google Scholar]
  11. Fuller, A. O. & Lee, W. C. (1992). Herpes simplex virus type 1 entry through a cascade of virus–cell interactions requires different roles of gD and gH in penetration.Journal of Virology 66, 5002-5012. [Google Scholar]
  12. Harlow, E. & Lane, D. (1988).Antibody: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  13. Huber, M. T. & Compton, T. (1997). Characterization of a novel third member of the human cytomegalovirus glycoprotein H–glycoprotein L complex.Journal of Virology 71, 5391-5398. [Google Scholar]
  14. Huber, M. T. & Compton, T. (1998). The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H–glycoprotein L-containing envelope complex.Journal of Virology 72, 8191-8197. [Google Scholar]
  15. Hutchinson, L., Browne, H., Wargent, V., Davis, P. N., Primorac, S., Goldsmith, K., Minson, A. C. & Johnson, D. C. (1992). A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH.Journal of Virology 66, 2240-2250. [Google Scholar]
  16. Kaye, J. F., Gompels, U. A. & Minson, A. C. (1992). Glycoprotein H of human cytomegalovirus (HCMV) forms a stable complex with the HCMV UL115 gene product.Journal of General Virology 73, 2693-2698.[CrossRef] [Google Scholar]
  17. Klupp, B. G., Baumeister, J., Karger, A., Visser, N. & Mettenleiter, T. C. (1994). Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL.Journal of Virology 68, 3868-3878. [Google Scholar]
  18. Kornfeld, R. & Kornfeld, S. (1985). Assembly of asparagine-linked oligosaccharides.Annual Review of Biochemistry 54, 631-664.[CrossRef] [Google Scholar]
  19. Kutinová, L., Ludvı́ková, V., Simonová, V., Otavová, M., Krystofová, J., Hainz, P., Press, M., Kunke, D. & Vonka, V. (1995). Search for optimal parent for recombinant vaccinia virus vaccines. Study of three vaccinia virus vaccinal strains and several virus lines derived from them.Vaccine 13, 487-493.[CrossRef] [Google Scholar]
  20. Kutinová, L., Ludvı́ková, V., Marešová, L., Němečková, Š., Brouček, J., Hainz, P. & Vonka, V. (1999). Effect of virulence on immunogenicity of single and double vaccinia virus recombinants expressing differently immunogenic antigens: antibody-response inhibition induced by immunization with a mixture of recombinants differing in virulence.Journal of General Virology 80, 2901-2908. [Google Scholar]
  21. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680-685.[CrossRef] [Google Scholar]
  22. Li, L., Nelson, J. A. & Britt, W. J. (1997). Glycoprotein H-related complexes of human cytomegalovirus: identification of a third protein in the gCIII complex.Journal of Virology 71, 3090-3097. [Google Scholar]
  23. Li, Q., Turk, S. M. & Hutt, F. L. (1995). The Epstein–Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells.Journal of Virology 69, 3987-3994. [Google Scholar]
  24. Li, Q., Buranathai, C., Grose, C. & Hutt, F. L. (1997). Chaperone functions common to nonhomologous Epstein–Barr virus gL and varicella–zoster virus gL proteins.Journal of Virology 71, 1667-1670. [Google Scholar]
  25. Liu, D. X., Gompels, U. A., Nicholas, J. & Lelliott, C. (1993). Identification and expression of the human herpesvirus 6 glycoprotein H and interaction with an accessory 40K glycoprotein.Journal of General Virology 74, 1847-1857.[CrossRef] [Google Scholar]
  26. Massaer, M., Haumont, M., Place, M., Bollen, A. & Jacobs, P. (1993). Induction of neutralizing antibodies by varicella-zoster virus gpII glycoprotein expressed from recombinant vaccinia virus.Journal of General Virology 74, 491-494.[CrossRef] [Google Scholar]
  27. Montalvo, E. A. & Grose, C. (1986). Neutralization epitope of varicella zoster virus on native viral glycoprotein gp118 (VZV glycoprotein gpIII).Virology 149, 230-241.[CrossRef] [Google Scholar]
  28. Němečková, Š., Ludvı́ková, V. , Marešová, L., Krystofová, J., Hainz, P. & Kutinová, L. (1996). Induction of varicella-zoster virus-neutralizing antibodies in mice by co-infection with recombinant vaccinia viruses expressing the gH or gL gene.Journal of General Virology 77, 211-215.[CrossRef] [Google Scholar]
  29. Olson, J. K. & Grose, C. (1997). Endocytosis and recycling of varicella-zoster virus Fc receptor glycoprotein gE: internalization mediated by a YXXL motif in the cytoplasmic tail.Journal of Virology 71, 4042-4054. [Google Scholar]
  30. Olson, J. K. & Grose, C. (1998). Complex formation facilitates endocytosis of the varicella-zoster virus gE:gI Fc receptor.Journal of Virology 72, 1542-1551. [Google Scholar]
  31. Peeters, B., de Wind, N., Broer, R., Gielkens, A. & Moormann, R. (1992). Glycoprotein H of pseudorabies virus is essential for entry and cell-to-cell spread of the virus.Journal of Virology 66, 3888-3892. [Google Scholar]
  32. Perkus, M. E., Panicali, D., Mercer, S. & Paoletti, E. (1986). Insertion and deletion mutants of vaccinia virus.Virology 152, 285-297.[CrossRef] [Google Scholar]
  33. Rodriguez, J. E., Moninger, T. & Grose, C. (1993). Entry and egress of varicella virus blocked by same anti-gH monoclonal antibody.Virology 196, 840-844.[CrossRef] [Google Scholar]
  34. Sambrook, J., Maniatis, T. & Fritsch, E. F. (1989).Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Shida, H. & Matsumoto, S. (1983). Analysis of the hemagglutinin glycoprotein from mutants of vaccinia virus that accumulates on the nuclear envelope.Cell 33, 423-434.[CrossRef] [Google Scholar]
  36. Spaete, R. R., Perot, K., Scott, P. I., Nelson, J. A., Stinski, M. F. & Pachl, C. (1993). Coexpression of truncated human cytomegalovirus gH with the UL115 gene product or the truncated human fibroblast growth factor receptor results in transport of gH to the cell surface.Virology 193, 853-861.[CrossRef] [Google Scholar]
  37. Stokes, A., Alber, D. G., Greensill, J., Amellal, B., Carvalho, R., Taylor, L. A., Doel, T. R., Killington, R. A., Halliburton, I. W. & Meredith, D. M. (1996). The expression of the proteins of equine herpesvirus 1 which share homology with herpes simplex virus 1 glycoproteins H and L.Virus Research 40, 91-107.[CrossRef] [Google Scholar]
  38. Sugano, T., Tomiyama, T., Matsumoto, Y.-i., Sasaki, S., Kimura, T., Forghani, B. & Masuho, Y. (1991). A human monoclonal antibody against varicella-zoster virus glycoprotein III.Journal of General Virology 72, 2065-2073.[CrossRef] [Google Scholar]
  39. Wang, X., Kenyon, W. J., Li, Q., Mullberg, J. & Hutt, F. L. (1998). Epstein–Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells.Journal of Virology 72, 5552-5558. [Google Scholar]
  40. Ye, M., Duus, K. M., Peng, J., Price, D. H. & Grose, C. (1999). Varicella-zoster virus Fc receptor component gI is phosphorylated on its endodomain by a cyclin-dependent kinase.Journal of Virology 73, 1320-1330. [Google Scholar]
  41. Yoshida, S., Lee, L. F., Yanagida, N. & Nazerian, K. (1994). Identification and characterization of a Marek’s disease virus gene homologous to glycoprotein L of herpes simplex virus.Virology 204, 414-419.[CrossRef] [Google Scholar]
  42. Zhu, Z., Hao, Y., Gershon, M. D., Ambron, R. T. & Gershon, A. A. (1996). Targeting of glycoprotein I (gE) of varicella-zoster virus to the trans-Golgi network by an AYRV sequence and an acidic amino acid-rich patch in the cytosolic domain of the molecule.Journal of Virology 70, 6563-6575. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-6-1545
Loading
/content/journal/jgv/10.1099/0022-1317-81-6-1545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error