1887

Abstract

A 20089 nucleotide (nt) sequence was determined for the 5′ end of the (+)-ssRNA genome of gill-associated virus (GAV), a yellow head-like virus infecting prawns. Clones were generated from a ∼22 kb dsRNA purified from lymphoid organ total RNA of GAV-infected prawns. The region contains a single gene comprising two long overlapping open reading frames, ORF1a and ORF1b, of 4060 and 2646 amino acids, respectively. The ORFs are structurally related to the ORF1a and ORF1ab polyproteins of coronaviruses and arteriviruses. The 99 nt overlap between ORF1a and ORF1b contains a putative AAAUUUU ‘slippery’ sequence associated with −1 ribosomal frameshifting. A 131 nt stem–loop with the potential to form a complex pseudoknot resides 3 nt downstream of this sequence. Although different to the G/UUUAAAC frameshift sites and ‘H-type’ pseudoknots of nidoviruses, transcription/translation analysis demonstrated that the GAV element also facilitates read-through of the ORF1a/1b junction. As in coronaviruses, GAV ORF1a encodes a 3C-like cysteine protease domain located between two hydrophobic regions. However, its sequence suggests some structural relationship to the chymotrypsin-like serine proteases of arteriviruses. ORF1b encodes homologues of the ‘SDD’ polymerase, which among (+)-RNA viruses is unique to nidoviruses, as well as metal-ion-binding and helicase domains. The presence of a dsRNA replicative intermediate and ORF1a and ORF1ab polyproteins translated by a −1 frameshift suggests that GAV represents the first invertebrate member of the Order .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-6-1473
2000-06-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/6/0811473a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-6-1473&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Research 25, 3389-3402.[CrossRef] [Google Scholar]
  2. Bonilla, P. J., Gorbalenya, A. E. & Weiss, S. R. (1994). Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: heterogeneity among MHV strains.Virology 198, 736-740.[CrossRef] [Google Scholar]
  3. Boonyaratpalin, S., Supamattaya, K., Kasornchandra, J., Direkbusaracom, S., Aekpanithanpong, U. & Chantanachookin, C. (1993). Non-occluded baculo-like virus, the causative agent of yellow-head disease in the black tiger shrimp (Penaeus monodon).Fish Pathology 28, 103-109.[CrossRef] [Google Scholar]
  4. Boursnell, M. E. G., Brown, T. D. K., Foulds, I. J., Green, P. F., Tomley, F. M. & Binns, M. M. (1987). Completion of the sequence of the coronavirus avian infectious bronchitis virus.Journal of General Virology 68, 57-77.[CrossRef] [Google Scholar]
  5. Bredenbeek, P. J., Pachuk, C. J., Noten, A. F. H., Charite, J., Luytjes, W., Weiss, S. R. & Spaan, W. J. M. (1990). The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frame shifting mechanism.Nucleic Acids Research 18, 1825-1832.[CrossRef] [Google Scholar]
  6. Brierley, I. (1995). Ribosomal frameshifting on viral RNAs.Journal of General Virology 76, 1885-1892.[CrossRef] [Google Scholar]
  7. Brierley, I., Digard, P. & Inglis, S. C. (1989). Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot.Cell 57, 537-547.[CrossRef] [Google Scholar]
  8. Brierley, I., Jenner, A. J. & Inglis, S. C. (1992). Mutational analysis of the ‘‘slippery-sequence’’ component of a coronavirus ribosomal frameshifting signal.Journal of Molecular Biology 227, 463-479.[CrossRef] [Google Scholar]
  9. Carrington, J. C. & Dougherty, W. G. (1987). Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease.Journal of Virology 61, 2540-2548. [Google Scholar]
  10. Chantanachookin, C., Boonyaratpalin, S., Kasornchandra, J., Sataporn, D., Ekpanithanpong, U., Supamataya, K., Riurairatana, S. & Flegel, T. W. (1993). Histology and ultrastructure reveal a new granulosis-like virus in Penaeus monodon affected by yellow-head disease.Diseases of Aquatic Organisms 17, 145-157.[CrossRef] [Google Scholar]
  11. Cowley, J. A., Dimmock, C. M., Wongteerasupaya, C., Boonsaeng, V., Panyim, S. & Walker, P. J. (1999). Yellow head virus from Thailand and gill-associated virus from Australia are closely related but distinct prawn viruses.Diseases of Aquatic Organisms 36, 153-157.[CrossRef] [Google Scholar]
  12. Cowley, J. A., Dimmock, C. M., Spann, K. M. & Walker, P. J. (2000). Detection of Australian gill-associated virus (GAV) and lymphoid organ virus (LOV) of Penaeus monodon by RT-nested PCR. Diseases of Aquatic Organisms (in press).
  13. den Boon, J. A., Snijder, E. J., Chirnside, E. D., de Vries, A. A. F., Horzinek, M. C. & Spaan, W. J. M. (1991). Equine arterivirus is not a togavirus but belongs to the coronavirus-like superfamily.Journal of Virology 65, 2910-2920. [Google Scholar]
  14. de Vries, A. A. F., Chirnside, E. D., Bredenbeek, P. J, Gravestein, L. A., Horzinek, M. C. & Spaan, W. J. M. (1990). All subgenomic mRNAs of equine arteritis virus contain a common leader sequence.Nucleic Acids Research 18, 3241-3247.[CrossRef] [Google Scholar]
  15. de Vries, A. A. F., Horzinek, M. C., Rottier, P. J. M. & de Groot, R. J. (1997). The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses.Seminars in Virology 8, 33-47.[CrossRef] [Google Scholar]
  16. Dumas, J. B., Edwards, M., Delort, J. & Mallet, J. (1991). Oligodeoxynucleotide ligation of single-stranded cDNAs: a new tool for cloning 5′ ends of mRNAs and for constructing cDNA libraries by in vitro amplification.Nucleic Acids Research 19, 5227-5232.[CrossRef] [Google Scholar]
  17. Eleouet, J.-F., Rasschaert, D., Lambert, P., Levy, L., Verde, P. & Laude, H. (1995). Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus.Virology 206, 817-822.[CrossRef] [Google Scholar]
  18. Felsenstein, J. (1993). PHYLIP (phylogeny inference package) version 3.5c. Distributed by the author, Department of Genetics, University of Washington, Seattle, WA, USA.
  19. Froussard, P. (1992). A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA.Nucleic Acids Research 20, 2900.[CrossRef] [Google Scholar]
  20. Godeny, E. K., Chen, L., Kumar, S. N., Methven, S. L., Koonin, E. V. & Brinton, M. A. (1993). Complete genomic sequence and phylogenetic analysis of the lactate dehydrogenase elevating virus (LDV).Virology 194, 585-596.[CrossRef] [Google Scholar]
  21. Gorbalenya, A. E. & Koonin, E. V. (1989). Viral proteins containing the purine NTP-binding sequence pattern.Nucleic Acids Research 17, 8413-8440.[CrossRef] [Google Scholar]
  22. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. & Blinov, V. M. (1989). Coronavirus genome: predictive functional domains in the non-structural polyprotein by comparative amino acid sequence analysis.Nucleic Acids Research 17, 4847-4861.[CrossRef] [Google Scholar]
  23. Herold, J., Raabe, T., Schelle-Prinz, B. & Siddell, S. G. (1993). Nucleotide sequence of the human coronavirus 229E RNA polymerase locus.Virology 195, 680-691.[CrossRef] [Google Scholar]
  24. Hodgman, T. C. (1988). A new superfamily of replicative proteins.Nature 333, 22-23. [Google Scholar]
  25. Jacks, T., Madhani, H. D., Masiarz, F. R. & Varmus, H. E. (1988). Signals for ribosomal frameshifting in the Rous sarcoma virus gag–pol region.Cell 55, 447-458.[CrossRef] [Google Scholar]
  26. Koonin, E. V. (1991). The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses.Journal of General Virology 72, 2197-2206.[CrossRef] [Google Scholar]
  27. Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes.Cell 44, 283-292.[CrossRef] [Google Scholar]
  28. Lai, M. M. C. (1990). Coronavirus: organization, replication and expression of genome.Annual Review of Microbiology 44, 303-333.[CrossRef] [Google Scholar]
  29. Lai, M. M. C. & Cavanagh, D. (1997). The molecular biology of coronaviruses.Advances in Virus Research 48, 1-100.[CrossRef] [Google Scholar]
  30. Lai, M. M. C., Baric, R. S., Brayton, P. R. & Stohlman, S. A. (1984). Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus.Proceedings of the National Academy of Sciences, USA 81, 3626-3630.[CrossRef] [Google Scholar]
  31. Lee, H.-J., Shieh, C.-K., Gorbalenya, A. E., Koonin, E. V., La Monica, N., Tuler, J., Bagdzhadzhyan, A. & Lai, M. M. C. (1991). The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase.Virology 180, 567-582.[CrossRef] [Google Scholar]
  32. Limsuwan, C. (1991).Handbook for Cultivation of Black Tiger Prawns. Bangkok: Tansetakit Co. Ltd.
  33. Loh, P. C., Tapay, L. M., Lu, Y. & Nadala, E. C. B.Jr (1997). Viral pathogens of the penaeid shrimp.Advances in Virus Research 48, 263-312. [Google Scholar]
  34. Meulenberg, J. J., Hulst, M. M., de Meijer, E. J., Moonen, P. L. J. M., den Besten, A., de Kluyver, E. P., Wensvoort, G. & Moormann, R. J. M. (1993). Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV.Virology 192, 62-72.[CrossRef] [Google Scholar]
  35. Nadala, E. C. B., Tapay, L. M. & Loh, P. C. (1997). Yellow-head virus: a rhabdovirus-like pathogen of penaeid shrimp.Diseases of Aquatic Organisms 31, 141-146.[CrossRef] [Google Scholar]
  36. Patel, P. H. & Preston, B. D. (1994). Marked infidelity of human immunodeficiency virus type 1 reverse transcriptase at RNA and DNA template ends.Proceedings of the National Academy of Sciences, USA 91, 549-553.[CrossRef] [Google Scholar]
  37. Peliska, J. A. & Benkovic, S. J. (1992). Mechanism of DNA strand transfer reactions catalysed by HIV-1 reverse transcriptase.Science 258, 1112-1118.[CrossRef] [Google Scholar]
  38. Pleij, C. W. A. & Bosch, L. (1989). RNA pseudoknots: structure, detection, and prediction.Methods in Enzymology 180, 289-303. [Google Scholar]
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Shieh, C. K., Soe, L. H., Makino, S., Chang, M. F., Stohlman, S. A. & Lai, M. M. C. (1987). The 5′-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription.Virology 156, 321-330.[CrossRef] [Google Scholar]
  41. Snijder, E. J. & Spaan, W. J. M. (1995). The coronaviruslike superfamily. In The Coronaviridae, pp. 239-255. Edited by S. G. Siddell. New York: Plenum Press.
  42. Snijder, E. J., den Boon, J. A., Bredenbeek, P. J., Horzinek, M. C., Rijnbrand, R. & Spaan, W. J. M. (1990a). The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related.Nucleic Acids Research 18, 4535-4542.[CrossRef] [Google Scholar]
  43. Snijder, E. J., Horzinek, M. C. & Spaan, W. J. M. (1990b). A 3′-coterminal nested set of independently transcribed mRNAs is generated during Berne virus replication.Journal of Virology 64, 331-338. [Google Scholar]
  44. Snijder, E. J., den Boon, J. A., Horzinek, M. C. & Spaan, W. J. M. (1991). Characterization of defective interfering Berne virus RNAs.Journal of General Virology 72, 1635-1643.[CrossRef] [Google Scholar]
  45. Snijder, E. J., Wassenaar, A. L. M., van Dinten, L. C., Spaan, W. J. M. & Gorbalenya, A. E. (1996). The arterivirus Nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases.Journal of Biological Chemistry 271, 4864-4871.[CrossRef] [Google Scholar]
  46. Sonigo, P., Barker, C., Hunter, E. & Wain-Hobson, S. (1986). Nucleotide sequence of Mason-Pfizer monkey virus: an immunosuppressive D-type retrovirus.Cell 45, 375-385.[CrossRef] [Google Scholar]
  47. Spaan, W., Cavanagh, D. & Horzinek, M. C. (1988). Coronaviruses: structure and genome expression.Journal of General Virology 69, 2939-2952.[CrossRef] [Google Scholar]
  48. Spann, K. M., Vickers, J. E. & Lester, R. J. G. (1995). Lymphoid organ virus of Penaeus monodon from Australia.Diseases of Aquatic Organisms 23, 127-134.[CrossRef] [Google Scholar]
  49. Spann, K. M., Cowley, J. A., Walker, P. J. & Lester, R. J. G. (1997). Gill-associated virus (GAV), a yellow head-like virus from Penaeus monodon cultured in Australia.Diseases of Aquatic Organisms 31, 169-179.[CrossRef] [Google Scholar]
  50. Tang, K. F.-J. & Lightner, D. V. (1999). A yellow head virus gene probe: application to in situ hybridization and determination of its nucleotide sequence.Diseases of Aquatic Organisms 35, 165-173.[CrossRef] [Google Scholar]
  51. ten Dam, E. B., Pleij, C. W. A. & Bosch, L. (1990). RNA pseudoknots: translational frameshifting and readthrough on viral RNAs.Virus Genes 4, 121-136.[CrossRef] [Google Scholar]
  52. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice.Nucleic Acids Research 22, 4673-4680.[CrossRef] [Google Scholar]
  53. Walker, P. J., Byrne, K. A., Riding, G. A., Cowley, J. A., Wang, Y. & McWilliam, S. M. (1992). The genome of bovine ephemeral fever rhabdovirus contains two related glycoprotein genes.Virology 191, 49-61.[CrossRef] [Google Scholar]
  54. Walker, P. J., Wang, Y., Cowley, J. A., McWilliam, S. M. & Prehaud, C. J. N. (1994). Structural and antigenic analysis of the nucleoprotein of bovine ephemeral fever rhabdovirus.Journal of General Virology 75, 1889-1899.[CrossRef] [Google Scholar]
  55. Weiss, M., Steck, F. & Horzinek, M. C. (1983). Purification and partial characterization of a new enveloped RNA virus (Berne virus).Journal of General Virology 64, 1849-1858.[CrossRef] [Google Scholar]
  56. Wongteerasupaya, C., Sriurairatana, S., Vickers, J. E., Akrajamorn, A., Boonsaeng, V., Panyim, S., Tassanakajon, A., Withyachumnarnjul, B. & Flegel, T. W. (1995). Yellow-head virus of Penaeus monodon is an RNA virus.Diseases of Aquatic Organisms 22, 45-50.[CrossRef] [Google Scholar]
  57. Zuker, M. (1989). On finding all suboptimal foldings of an RNA molecule.Science 244, 48-52.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-6-1473
Loading
/content/journal/jgv/10.1099/0022-1317-81-6-1473
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error