A defective RNA (D-RNA), CD-61, derived from the Beaudette strain of the avian coronavirus infectious bronchitis virus (IBV), was rescued (replicated and packaged) using four heterologous strains of IBV as helper virus. Sequence analysis of the genomic RNA from the four heterologous IBV strains (M41, H120, HV10 and D207) identified nucleotide differences of up to 17% within the leader sequence and up to 4·3% within the whole of the adjacent 5′ untranslated region (UTR). Analysis of the 5′ ends of the rescued D-RNAs showed that the Beaudette leader sequence, present on the initial CD-61, had been replaced with the corresponding leader sequence from the helper IBV strain but the adjacent 5′ UTR sequence of the rescued D-RNAs corresponded to the original CD-61 Beaudette sequence. These results demonstrated that the phenomenon of leader switching previously identified for the coronaviruses murine hepatitis virus and bovine coronavirus (BCoV) also occurred during the replication of IBV D-RNAs. Three predicted stem–loop structures were identified within the 5′ UTR of IBV. Stem–loop I showed a high degree of covariance amongst the IBV strains providing phylogenetic evidence that this structure exists and is potentially involved in replication, supporting previous observations that a BCoV stem–loop homologue was essential for replication of BCoV defective interfering RNAs.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1987).Current Protocols In Molecular Biology. New York: John Wiley and Sons.
  2. Binns, M. M., Boursnell, M. E. G., Cavanagh, D., Pappain, D. J. C. & Brown, T. D. K. (1985). Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. Journal of General Virology 66, 719-726.[CrossRef] [Google Scholar]
  3. Binns, M. M., Boursnell, M. E. G., Tomley, F. M. & Brown, T. D. K. (1986). Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beaudette. Journal of General Virology 67, 2825-2831.[CrossRef] [Google Scholar]
  4. Bonfield, J. K., Smith, K. F. & Staden, R. (1995). A new DNA sequence assembly program. Nucleic Acids Research 24, 4992-4999. [Google Scholar]
  5. Boursnell, M. E. G., Brown, T. D. K., Foulds, I. J., Green, P. F., Tomley, F. M. & Binns, M. M. (1987). Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. Journal of General Virology 68, 57-77.[CrossRef] [Google Scholar]
  6. Brian, D. A. & Spaan, W. J. M. (1997). Recombination and coronavirus defective interfering RNAs. Seminars in Virology 8, 101-111.[CrossRef] [Google Scholar]
  7. Chang, R. Y., Hofmann, M. A., Sethna, P. B. & Brian, D. A. (1994). A cis-acting function for the coronavirus leader in defective interfering RNA replication.Journal of Virology 68, 8223-8231. [Google Scholar]
  8. Chang, R. Y., Krishnan, R. & Brian, D. A. (1996). The UCUAAAC promoter motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA. Journal of Virology 70, 2720-2729. [Google Scholar]
  9. Darbyshire, J. H., Rowell, J. G., Cook, J. K. A. & Peters, R. W. (1979). Taxonomic studies on strains of avian infectious bronchitis virus using neutralisation tests in tracheal organ cultures. Archives of Virology 61, 227-238.[CrossRef] [Google Scholar]
  10. Davelaar, F. G., Kouwenhoven, B. & Burger, A. G. (1984). Occurrence and significance of infectious bronchitis virus variant strains in egg and broiler production in the Netherlands. Veterinary Quarterly 6, 114-120.[CrossRef] [Google Scholar]
  11. Devereux, J., Haeberli, P. & Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12, 387-395.[CrossRef] [Google Scholar]
  12. de Vries, A. A. F., Horzinek, M. C., Rottier, P. J. M. & de Groot, R. J. (1997). The genome organisation of the Nidovirales: similarities and differences between arteri-, toro- and coronaviruses. Seminars in Virology 8, 33-47.[CrossRef] [Google Scholar]
  13. Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 6-13.[CrossRef] [Google Scholar]
  14. Hiscox, J. A., Mawditt, K. L., Cavanagh, D. & Britton, P. (1995). Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. Journal of Virology 69, 6219-6227. [Google Scholar]
  15. Hofmann, M. A., Sethna, P. B. & Brian, D. A. (1990). Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. Journal of Virology 64, 4108-4114. [Google Scholar]
  16. Jaeger, J. A., Turner, D. H. & Zuker, M. (1989). Improved predictions of secondary structures for RNA. Proceedings of the National Academy of Sciences, USA 86, 7706-7710.[CrossRef] [Google Scholar]
  17. Jaeger, J. A., Turner, D. H. & Zuker, M. (1990). Predicting optimal and suboptimal secondary structure for RNA. Methods in Enzymology 183, 281-306. [Google Scholar]
  18. Kottier, S. A., Cavanagh, D. & Britton, P. (1995). Experimental evidence of recombination in coronavirus infectious bronchitis virus. Virology 213, 569-580.[CrossRef] [Google Scholar]
  19. Kusters, J. G., Niesters, H. G. M., Lenstra, J. A., Horzinek, M. C. & Van Der Zeijst, B. A. M. (1989). Phylogeny of antigenic variants of avian coronavirus IBV. Virology 169, 217-221.[CrossRef] [Google Scholar]
  20. Lai, M. M. & Cavanagh, D. (1997). The molecular biology of coronaviruses. Advances in Virus Research 48, 1-100.[CrossRef] [Google Scholar]
  21. Makino, S. & Lai, M. M. C. (1989). High-frequency leader sequence switching during coronavirus defective interfering RNA replication. Journal of Virology 63, 5285-5292. [Google Scholar]
  22. Makino, S., Stohlman, S. A. & Lai, M. M. C. (1986). Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription. Proceedings of the National Academy of Sciences, USA 83, 4204-4208.[CrossRef] [Google Scholar]
  23. Makino, S., Shieh, C., Keck, J. G. & Lai, M. M. C. (1988a). Defective-interfering particles of murine coronavirus: mechanism of synthesis of defective viral RNAs. Virology 163, 104-111.[CrossRef] [Google Scholar]
  24. Makino, S., Shieh, C.-K., Soe, L. H., Baker, S. C. & Lai, M. M. C. (1988b). Primary structure and translation of a defective interfering RNA of murine coronavirus. Virology 166, 550-560.[CrossRef] [Google Scholar]
  25. Makino, S., Yokomori, K. & Lai, M. M. C. (1990). Analysis of efficiently packaged defective Interfering RNAs of murine coronavirus: localization of a possible RNA-packaging signal. Journal of Virology 64, 6045-6053. [Google Scholar]
  26. Maruyama, I. N., Rakow, T. L. & Maruyama, H. I. (1995). cRACE: a simple method for identification of the 5′ end of mRNAs. Nucleic Acids Research 23, 3796-3797.[CrossRef] [Google Scholar]
  27. Matzura, O. & Wennborg, A. (1996). RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Computer Applications in the Biosciences 12, 247-249. [Google Scholar]
  28. Mendez, A., Smerdou, C., Izeta, A., Gebauer, F. & Enjuanes, L. (1996). Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: packaging and heterogeneity. Virology 217, 495-507.[CrossRef] [Google Scholar]
  29. Nicholas, K. B. & Nicholas, H. B., Jr (1997). GeneDoc: a tool for editing and annotating multiple sequence alignments, 2.4.002 edn: Distributed by author (http://www.cris.com/∼ketchup/genedoc. html).
  30. Niesters, H. G. M., Lenstra, J. A., Spaan, W. J. M., Zijderveld, A. J., Bleumink-Pluym, N. M. C., Hong, F., Van Scharrenburg, G. J. M., Horzinek, M. C. & Van Der Zeijst, B. A. M. (1986). The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Research 5, 253-263.[CrossRef] [Google Scholar]
  31. Pénzes, Z. (1995).Defective replicating RNAs of coronavirus infectious bronchitis virus: investigation of replication and genome packaging signals. PhD thesis, University of Hertfordshire, UK.
  32. Pénzes, Z., Tibbles, K., Shaw, K., Britton, P., Brown, T. D. K. & Cavanagh, D. (1994). Characterization of a replicating and packaged defective RNA of avian coronavirus infectious bronchitis virus. Virology 203, 286-293.[CrossRef] [Google Scholar]
  33. Pénzes, Z., Wroe, C., Brown, T. D., Britton, P. & Cavanagh, D. (1996). Replication and packaging of coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame. Journal of Virology 70, 8660-8668. [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: A LaboratoryManual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Sawicki, S. G. & Sawicki, D. L. (1990). Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. Journal of Virology 64, 1050-1056. [Google Scholar]
  36. Siddell, S. G. (1995). The Coronaviridae. In The Coronaviridae, pp. 1-10. Edited by S. G. Siddell. New York: Plenum.
  37. Stern, D. F. & Kennedy, S. I. T. (1980). Coronavirus multiplication strategy. I. Identification and characterization of virus-specific RNA. Journal of Virology 34, 665-674. [Google Scholar]
  38. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997). The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876-4882.[CrossRef] [Google Scholar]
  39. van der Most, R. G. & Spaan, W. J. M. (1995). Coronavirus replication, transcription, and RNA recombination. In The Coronaviridae, pp. 11-31. Edited by S. G. Siddell. New York: Plenum.
  40. van der Most, R. G., Bredenbeek, P. J. & Spaan, W. J. M. (1991). A domain at the 3′ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. Journal of Virology 65, 3219-3226. [Google Scholar]
  41. Zuker, M. (1989a). Computer prediction of RNA structure. Methods in Enzymology 180, 262-288. [Google Scholar]
  42. Zuker, M. (1989b). On finding all suboptimal foldings of an RNA molecule. Science 244, 48-52.[CrossRef] [Google Scholar]
  43. Zuker, M. & Stiegler, P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133-148.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error