1887

Abstract

Relationships among the amino acid sequences of viral movement proteins related to the 30 kDa (‘30K’) movement protein of tobacco mosaic virus – the 30K superfamily – were explored. Sequences were grouped into 18 families. A comparison of secondary structure predictions for each family revealed a common predicted core structure flanked by variable N- and C-terminal domains. The core consisted of a series of β-elements flanked by an α-helix on each end. Consensus sequences for each of the families were generated and aligned with one another. From this alignment an overall secondary structure prediction was generated and a consensus sequence that can recognize each family in database searches was obtained. The analysis led to criteria that were used to evaluate other virus-encoded proteins for possible membership of the 30K superfamily. A rhabdoviral and a tenuiviral protein were identified as 30K superfamily members, as were plant-encoded phloem proteins. Parsimony analysis grouped tubule-forming movement proteins separate from others. Establishment of the alignment of residues of diverse families facilitates comparison of mutagenesis experiments done on different movement proteins and should serve as a guide for further such experiments.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-1-257
2000-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/1/0810257a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-1-257&mimeType=html&fmt=ahah

References

  1. Agranovsky, A. A., Folimonov, A. S., Folimonova, S., Morozov, S., Schiemann, J., Lesemann, D. & Atabekov, J. G. ( 1998; ). Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus- based chimeric virus. Journal of General Virology 79, 889-895.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. Journal of Molecular Biology 215, 403-410.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389-3402.[CrossRef]
    [Google Scholar]
  4. Berna, A., Gafny, R., Wolf, S., Lucas, W. J., Holt, C. A. & Beachy, R. N. ( 1991; ). The TMV movement protein: role of the C-terminal 73 amino acids in subcellular localization and function. Virology 182, 682-689.[CrossRef]
    [Google Scholar]
  5. Berti, P. J. & Storer, A. C. ( 1995; ). Alignment/phylogeny of the papain superfamily of cysteine proteases. Journal of Molecular Biology 246, 273-283.[CrossRef]
    [Google Scholar]
  6. Carrington, J. C., Kasschau, K. D., Mahajan, S. K. & Schaad, M. C. ( 1996; ). Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8, 1669-1681.[CrossRef]
    [Google Scholar]
  7. Cheng, C. P., Tzafrir, I., Lockhart, B. E. & Olszewski, N. E. ( 1998; ). Tubules containing virions are present in plant tissues infected with Commelina yellow mottle badnavirus. Journal of General Virology 79, 925-929.
    [Google Scholar]
  8. Citovsky, V., Wong, M. L., Shaw, A. L., Prasad, B. V. & Zambryski, P. ( 1992; ). Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4, 397-411.[CrossRef]
    [Google Scholar]
  9. Citovsky, V., McLean, B. G., Zupan, J. R. & Zambryski, P. ( 1993; ). Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes & Development 7, 904-910.[CrossRef]
    [Google Scholar]
  10. Ding, B. ( 1998; ). Intercellular protein trafficking through plasmodesmata. Plant Molecular Biology 38, 279-310.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 1989; ). Phylogeny inference package. Cladistics 5, 164-166.
    [Google Scholar]
  12. Feng, D. F. & Doolittle, R. F. ( 1987; ). Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution 25, 351-360.[CrossRef]
    [Google Scholar]
  13. Fujita, M., Mise, K., Kajiura, Y., Dohi, K. & Furusawa, I. ( 1998; ). Nucleic acid-binding properties and subcellular localization of the 3a protein of brome mosaic bromovirus. Journal of General Virology 79, 1273-1280.
    [Google Scholar]
  14. Gafny, R., Lapidot, M., Berna, A., Holt, C. A., Deom, C. M. & Beachy, R. N. ( 1992; ). Effects of terminal deletion mutations on function of the movement protein of tobacco mosaic virus. Virology 187, 499-507.[CrossRef]
    [Google Scholar]
  15. Giesman-Cookmeyer, D. & Lommel, S. A. ( 1993; ). Alanine scanning mutagenesis of a plant virus movement protein identifies three functional domains. Plant Cell 5, 973-982.[CrossRef]
    [Google Scholar]
  16. Giesman-Cookmeyer, D., Silver, S., Vaewhongs, A. A., Lommel, S. A. & Deom, C. M. ( 1995; ). Tobamovirus and dianthovirus movement proteins are functionally homologous. Virology 213, 38-45.[CrossRef]
    [Google Scholar]
  17. Gribskov, M., Lüthy, R. & Eisenberg, D. ( 1989; ). Profile analysis. Methods in Enzymology 183, 146-159.
    [Google Scholar]
  18. Heinlein, M., Epel, B. L., Padgett, H. S. & Beachy, R. N. ( 1995; ). Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270, 1983-1986.[CrossRef]
    [Google Scholar]
  19. Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A. & Schultz, S. C. ( 1998; ). Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963-974.[CrossRef]
    [Google Scholar]
  20. Itaya, A., Bao, Y., Nelson, R. & Ding, B. ( 1997; ). Cell-to-cell trafficking of cucumber mosaic virus movement protein: green fluorescent protein fusion produced by biolistic gene bombardment in tobacco. Plant Journal 12, 1223-1230.[CrossRef]
    [Google Scholar]
  21. Kahn, T. W., Lapidot, M., Heinlein, M., Reichel, C., Cooper, B., Gafny, R. & Beachy, R. N. ( 1998; ). Domains of the TMV movement protein involved in subcellular localization. Plant Journal 15, 15-25.[CrossRef]
    [Google Scholar]
  22. Kasteel, D. T. J., Perbal, M. C., Boyer, J. C., Wellink, J., Goldbach, R. W., Maule, A. J. & van Lent, J. W. M. ( 1996; ). The movement proteins of cowpea mosaic virus and cauliflower mosaic virus induce tubular structures in plant and insect cells. Journal of General Virology 77, 2857-2864.[CrossRef]
    [Google Scholar]
  23. Kasteel, D. T., van der Wel, N. N., Jansen, K. A., Goldbach, R. W. & van Lent, J. W. ( 1997; ). Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. Journal of General Virology 78, 2089-2093.
    [Google Scholar]
  24. Koonin, E. V. ( 1991; ). The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. Journal of General Virology 72, 2197-2206.[CrossRef]
    [Google Scholar]
  25. Koonin, E. V., Mushegian, A. R., Ryabov, E. V. & Dolja, V. V. ( 1991; ). Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. Journal of General Virology 72, 2895-2903.[CrossRef]
    [Google Scholar]
  26. Leisner, S. M. ( 1999; ). Genetic basis of virus transport in plants. In Molecular Biology of Plant Viruses, pp. 161-182. Edited by C. L. Mandahar. Boston: Kluwer.
  27. Lucas, W. J., Ding, B. & van der Schoot, C. ( 1993; ). Plasmodesmata and the supracellular nature of plants. New Phytologist 125, 435-476.[CrossRef]
    [Google Scholar]
  28. Lyons-Weiler, J. & Hoelzer, G. A. ( 1997; ). Escaping from the Felsenstein zone by detecting long branches in phylogenetic data. Molecular Phylogenetics and Evolution 8, 375-384.[CrossRef]
    [Google Scholar]
  29. Melcher, U. ( 1990; ). Similarities between putative transport proteins of plant viruses. Journal of General Virology 71, 1009-1018.[CrossRef]
    [Google Scholar]
  30. Melcher, U. ( 1993; ). HIV-1 proteinase as structural model of intercellular transport proteins of plant viruses. Journal of Theoretical Biology 162, 61-74.[CrossRef]
    [Google Scholar]
  31. Mise, K., Allison, R. F., Janda, M. & Ahlquist, P. ( 1993; ). Bromovirus movement protein genes play a crucial role in host specificity. Journal of Virology 67, 2815-2823.
    [Google Scholar]
  32. Mushegian, A. R. ( 1994; ). The putative movement domain encoded by nepovirus RNA-2 is conserved in all sequenced nepoviruses. Archives of Virology 135, 437-441.[CrossRef]
    [Google Scholar]
  33. Mushegian, A. R. & Koonin, E. V. ( 1993; ). Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Archives of Virology 133, 239-257.[CrossRef]
    [Google Scholar]
  34. Nelson, R. S. & van Bel, A. J. E. ( 1998; ). The mystery of virus trafficking into, through and out of the vascular tissue. Progress in Botany 59, 476-533.
    [Google Scholar]
  35. Niefind, K. & Schomburg, D. ( 1991; ). Amino acid similarity coefficients for protein modeling and sequence alignment derived from main-chain folding angles. Journal of Molecular Biology 219, 481-497.[CrossRef]
    [Google Scholar]
  36. Reddick, B. B., Habera, L. F. & Law, M. D. ( 1997; ). Nucleotide sequence and taxonomy of maize chlorotic dwarf virus within the family Sequiviridae. Journal of General Virology 78, 1165-1174.
    [Google Scholar]
  37. Rost, B., Sander, C. & Schneider, R. ( 1994; ). PHD–An automatic mail server for protein secondary structure prediction. Computer Applications in the Biosciences 10, 53-60.
    [Google Scholar]
  38. Sato, K., Yoshikawa, N., Takahashi, T. & Taira, H. ( 1995; ). Expression, subcellular location and modification of the 50 kDa protein encoded by ORF2 of the apple chlorotic leaf spot trichovirus genome. Journal of General Virology 76, 1503-1507.[CrossRef]
    [Google Scholar]
  39. Scholthof, K. B., Hillman, B. I., Modrell, B., Heaton, L. A. & Jackson, A. O. ( 1994; ). Characterization and detection of sc4: a sixth gene encoded by Sonchus yellow net virus. Virology 204, 279-288.[CrossRef]
    [Google Scholar]
  40. Schoumacher, F., Giovane, C., Maira, M., Poirson, A., Godefroy, C. T. & Berna, A. ( 1994; ). Mapping of the RNA-binding domain of the alfalfa mosaic virus movement protein. Journal of General Virology 75, 3199-3202.[CrossRef]
    [Google Scholar]
  41. Sivakumaran, K., Fowler, B. C. & Hacker, D. L. ( 1998; ). Identification of viral genes required for cell-to-cell movement of southern bean mosaic virus. Virology 252, 376-386.[CrossRef]
    [Google Scholar]
  42. Storms, M. M., Kormelink, R., Peters, D., Van Lent, J. W. & Goldbach, R. W. ( 1995; ). The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214, 485-493.[CrossRef]
    [Google Scholar]
  43. Thomas, C. L. & Maule, A. J. ( 1995; ). Identification of the cauliflower mosaic virus movement protein RNA-binding domain. Virology 206, 1145-1149.[CrossRef]
    [Google Scholar]
  44. Thomas, C. L. & Maule, A. J. ( 1999; ). Identification of inhibitory mutants of cauliflower mosaic virus movement protein function after expression in insect cells. Journal of Virology 73, 7886-7890.
    [Google Scholar]
  45. Toriyama, S., Kimishima, T., Takahashi, M., Shimizu, T., Minaka, N. & Akutsu, K. ( 1998; ). The complete nucleotide sequence of the rice grassy stunt virus genome and genomic comparisons with viruses of the genus Tenuivirus. Journal of General Virology 79, 2051-2058.
    [Google Scholar]
  46. Watanabe, Y., Ogawa, T. & Okada, Y. ( 1992; ). In vivo phosphorylation of the 30-kDa protein of tobacco mosaic virus. FEBS Letters 313, 181-184.[CrossRef]
    [Google Scholar]
  47. Wieczorek, A. & Sanfacon, H. ( 1993; ). Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194, 734-742.[CrossRef]
    [Google Scholar]
  48. Xoconostle-Cazares, B., Xiang, Y., Ruiz-Medrano, R., Wang, H. L., Monzer, J., Yoo, B. C., McFarland, K. C., Franceschi, V. R. & Lucas, W. J. ( 1999; ). Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283, 94-98.[CrossRef]
    [Google Scholar]
  49. Zheng, H. Q., Wang, G. L. & Zhang, L. ( 1997; ). Alfalfa mosaic virus movement protein induces tubules in plant protoplasts. Molecular Plant–Microbe Interactions 10, 1010-1014.[CrossRef]
    [Google Scholar]
  50. Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E. & Hendrickson, W. A. ( 1996; ). Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606-1614.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-1-257
Loading
/content/journal/jgv/10.1099/0022-1317-81-1-257
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error