Relationships among the amino acid sequences of viral movement proteins related to the 30 kDa (‘30K’) movement protein of tobacco mosaic virus – the 30K superfamily – were explored. Sequences were grouped into 18 families. A comparison of secondary structure predictions for each family revealed a common predicted core structure flanked by variable N- and C-terminal domains. The core consisted of a series of β-elements flanked by an α-helix on each end. Consensus sequences for each of the families were generated and aligned with one another. From this alignment an overall secondary structure prediction was generated and a consensus sequence that can recognize each family in database searches was obtained. The analysis led to criteria that were used to evaluate other virus-encoded proteins for possible membership of the 30K superfamily. A rhabdoviral and a tenuiviral protein were identified as 30K superfamily members, as were plant-encoded phloem proteins. Parsimony analysis grouped tubule-forming movement proteins separate from others. Establishment of the alignment of residues of diverse families facilitates comparison of mutagenesis experiments done on different movement proteins and should serve as a guide for further such experiments.


Article metrics loading...

Loading full text...

Full text loading...



  1. Agranovsky, A. A., Folimonov, A. S., Folimonova, S., Morozov, S., Schiemann, J., Lesemann, D. & Atabekov, J. G. (1998). Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus- based chimeric virus. Journal of General Virology 79, 889-895. [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403-410.[CrossRef] [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Research 25, 3389-3402.[CrossRef] [Google Scholar]
  4. Berna, A., Gafny, R., Wolf, S., Lucas, W. J., Holt, C. A. & Beachy, R. N. (1991). The TMV movement protein: role of the C-terminal 73 amino acids in subcellular localization and function.Virology 182, 682-689.[CrossRef] [Google Scholar]
  5. Berti, P. J. & Storer, A. C. (1995). Alignment/phylogeny of the papain superfamily of cysteine proteases. Journal of Molecular Biology 246, 273-283.[CrossRef] [Google Scholar]
  6. Carrington, J. C., Kasschau, K. D., Mahajan, S. K. & Schaad, M. C. (1996). Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8, 1669-1681.[CrossRef] [Google Scholar]
  7. Cheng, C. P., Tzafrir, I., Lockhart, B. E. & Olszewski, N. E. (1998). Tubules containing virions are present in plant tissues infected with Commelina yellow mottle badnavirus. Journal of General Virology 79, 925-929. [Google Scholar]
  8. Citovsky, V., Wong, M. L., Shaw, A. L., Prasad, B. V. & Zambryski, P. (1992). Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4, 397-411.[CrossRef] [Google Scholar]
  9. Citovsky, V., McLean, B. G., Zupan, J. R. & Zambryski, P. (1993). Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes & Development 7, 904-910.[CrossRef] [Google Scholar]
  10. Ding, B. (1998). Intercellular protein trafficking through plasmodesmata. Plant Molecular Biology 38, 279-310.[CrossRef] [Google Scholar]
  11. Felsenstein, J. (1989). Phylogeny inference package. Cladistics 5, 164-166. [Google Scholar]
  12. Feng, D. F. & Doolittle, R. F. (1987). Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution 25, 351-360.[CrossRef] [Google Scholar]
  13. Fujita, M., Mise, K., Kajiura, Y., Dohi, K. & Furusawa, I. (1998). Nucleic acid-binding properties and subcellular localization of the 3a protein of brome mosaic bromovirus. Journal of General Virology 79, 1273-1280. [Google Scholar]
  14. Gafny, R., Lapidot, M., Berna, A., Holt, C. A., Deom, C. M. & Beachy, R. N. (1992). Effects of terminal deletion mutations on function of the movement protein of tobacco mosaic virus. Virology 187, 499-507.[CrossRef] [Google Scholar]
  15. Giesman-Cookmeyer, D. & Lommel, S. A. (1993). Alanine scanning mutagenesis of a plant virus movement protein identifies three functional domains. Plant Cell 5, 973-982.[CrossRef] [Google Scholar]
  16. Giesman-Cookmeyer, D., Silver, S., Vaewhongs, A. A., Lommel, S. A. & Deom, C. M. (1995). Tobamovirus and dianthovirus movement proteins are functionally homologous. Virology 213, 38-45.[CrossRef] [Google Scholar]
  17. Gribskov, M., Lüthy, R. & Eisenberg, D. (1989). Profile analysis. Methods in Enzymology 183, 146-159. [Google Scholar]
  18. Heinlein, M., Epel, B. L., Padgett, H. S. & Beachy, R. N. (1995). Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270, 1983-1986.[CrossRef] [Google Scholar]
  19. Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A. & Schultz, S. C. (1998). Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963-974.[CrossRef] [Google Scholar]
  20. Itaya, A., Bao, Y., Nelson, R. & Ding, B. (1997). Cell-to-cell trafficking of cucumber mosaic virus movement protein: green fluorescent protein fusion produced by biolistic gene bombardment in tobacco. Plant Journal 12, 1223-1230.[CrossRef] [Google Scholar]
  21. Kahn, T. W., Lapidot, M., Heinlein, M., Reichel, C., Cooper, B., Gafny, R. & Beachy, R. N. (1998). Domains of the TMV movement protein involved in subcellular localization. Plant Journal 15, 15-25.[CrossRef] [Google Scholar]
  22. Kasteel, D. T. J., Perbal, M. C., Boyer, J. C., Wellink, J., Goldbach, R. W., Maule, A. J. & van Lent, J. W. M. (1996). The movement proteins of cowpea mosaic virus and cauliflower mosaic virus induce tubular structures in plant and insect cells. Journal of General Virology 77, 2857-2864.[CrossRef] [Google Scholar]
  23. Kasteel, D. T., van der Wel, N. N., Jansen, K. A., Goldbach, R. W. & van Lent, J. W. (1997). Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. Journal of General Virology 78, 2089-2093. [Google Scholar]
  24. Koonin, E. V. (1991). The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. Journal of General Virology 72, 2197-2206.[CrossRef] [Google Scholar]
  25. Koonin, E. V., Mushegian, A. R., Ryabov, E. V. & Dolja, V. V. (1991). Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. Journal of General Virology 72, 2895-2903.[CrossRef] [Google Scholar]
  26. Leisner, S. M. (1999). Genetic basis of virus transport in plants. In Molecular Biology of Plant Viruses, pp. 161-182. Edited by C. L. Mandahar. Boston: Kluwer.
  27. Lucas, W. J., Ding, B. & van der Schoot, C. (1993). Plasmodesmata and the supracellular nature of plants. New Phytologist 125, 435-476.[CrossRef] [Google Scholar]
  28. Lyons-Weiler, J. & Hoelzer, G. A. (1997). Escaping from the Felsenstein zone by detecting long branches in phylogenetic data. Molecular Phylogenetics and Evolution 8, 375-384.[CrossRef] [Google Scholar]
  29. Melcher, U. (1990). Similarities between putative transport proteins of plant viruses. Journal of General Virology 71, 1009-1018.[CrossRef] [Google Scholar]
  30. Melcher, U. (1993). HIV-1 proteinase as structural model of intercellular transport proteins of plant viruses. Journal of Theoretical Biology 162, 61-74.[CrossRef] [Google Scholar]
  31. Mise, K., Allison, R. F., Janda, M. & Ahlquist, P. (1993). Bromovirus movement protein genes play a crucial role in host specificity. Journal of Virology 67, 2815-2823. [Google Scholar]
  32. Mushegian, A. R. (1994). The putative movement domain encoded by nepovirus RNA-2 is conserved in all sequenced nepoviruses. Archives of Virology 135, 437-441.[CrossRef] [Google Scholar]
  33. Mushegian, A. R. & Koonin, E. V. (1993). Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Archives of Virology 133, 239-257.[CrossRef] [Google Scholar]
  34. Nelson, R. S. & van Bel, A. J. E. (1998). The mystery of virus trafficking into, through and out of the vascular tissue. Progress in Botany 59, 476-533. [Google Scholar]
  35. Niefind, K. & Schomburg, D. (1991). Amino acid similarity coefficients for protein modeling and sequence alignment derived from main-chain folding angles. Journal of Molecular Biology 219, 481-497.[CrossRef] [Google Scholar]
  36. Reddick, B. B., Habera, L. F. & Law, M. D. (1997). Nucleotide sequence and taxonomy of maize chlorotic dwarf virus within the family Sequiviridae. Journal of General Virology 78, 1165-1174. [Google Scholar]
  37. Rost, B., Sander, C. & Schneider, R. (1994). PHD–An automatic mail server for protein secondary structure prediction. Computer Applications in the Biosciences 10, 53-60. [Google Scholar]
  38. Sato, K., Yoshikawa, N., Takahashi, T. & Taira, H. (1995). Expression, subcellular location and modification of the 50 kDa protein encoded by ORF2 of the apple chlorotic leaf spot trichovirus genome. Journal of General Virology 76, 1503-1507.[CrossRef] [Google Scholar]
  39. Scholthof, K. B., Hillman, B. I., Modrell, B., Heaton, L. A. & Jackson, A. O. (1994). Characterization and detection of sc4: a sixth gene encoded by Sonchus yellow net virus. Virology 204, 279-288.[CrossRef] [Google Scholar]
  40. Schoumacher, F., Giovane, C., Maira, M., Poirson, A., Godefroy, C. T. & Berna, A. (1994). Mapping of the RNA-binding domain of the alfalfa mosaic virus movement protein. Journal of General Virology 75, 3199-3202.[CrossRef] [Google Scholar]
  41. Sivakumaran, K., Fowler, B. C. & Hacker, D. L. (1998). Identification of viral genes required for cell-to-cell movement of southern bean mosaic virus. Virology 252, 376-386.[CrossRef] [Google Scholar]
  42. Storms, M. M., Kormelink, R., Peters, D., Van Lent, J. W. & Goldbach, R. W. (1995). The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214, 485-493.[CrossRef] [Google Scholar]
  43. Thomas, C. L. & Maule, A. J. (1995). Identification of the cauliflower mosaic virus movement protein RNA-binding domain. Virology 206, 1145-1149.[CrossRef] [Google Scholar]
  44. Thomas, C. L. & Maule, A. J. (1999). Identification of inhibitory mutants of cauliflower mosaic virus movement protein function after expression in insect cells. Journal of Virology 73, 7886-7890. [Google Scholar]
  45. Toriyama, S., Kimishima, T., Takahashi, M., Shimizu, T., Minaka, N. & Akutsu, K. (1998). The complete nucleotide sequence of the rice grassy stunt virus genome and genomic comparisons with viruses of the genus Tenuivirus. Journal of General Virology 79, 2051-2058. [Google Scholar]
  46. Watanabe, Y., Ogawa, T. & Okada, Y. (1992). In vivo phosphorylation of the 30-kDa protein of tobacco mosaic virus. FEBS Letters 313, 181-184.[CrossRef] [Google Scholar]
  47. Wieczorek, A. & Sanfacon, H. (1993). Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194, 734-742.[CrossRef] [Google Scholar]
  48. Xoconostle-Cazares, B., Xiang, Y., Ruiz-Medrano, R., Wang, H. L., Monzer, J., Yoo, B. C., McFarland, K. C., Franceschi, V. R. & Lucas, W. J. (1999). Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283, 94-98.[CrossRef] [Google Scholar]
  49. Zheng, H. Q., Wang, G. L. & Zhang, L. (1997). Alfalfa mosaic virus movement protein induces tubules in plant protoplasts. Molecular Plant–Microbe Interactions 10, 1010-1014.[CrossRef] [Google Scholar]
  50. Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E. & Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606-1614.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error