-
Volume 81,
Issue 1,
2000
Volume 81, Issue 1, 2000
- Review Article
-
- Animal: RNA Viruses
-
-
-
Human immunodeficiency virus type 1 population bottleneck during indinavir therapy causes a genetic drift in the env quasispecies
More LessThe impact of emergence of genetic resistance, soon after the beginning of antiretroviral therapy, on the genotype of other viral loci not implicated in the development of resistance was studied in four human immunodeficiency type 1 (HIV-1)-infected patients subjected to indinavir monotherapy. Two patients were chosen because they showed no decrease in virus load during the study period and two were selected because they showed a rapid decline in plasma viraemia after the initiation of therapy and a virus rebound after 12 weeks of treatment. The evolution of virus sequences was analysed within the four infected patients by examining virus sequences spanning the protease and C2–V3 env genes by RT–PCR of plasma samples obtained at the beginning and after 12 weeks of therapy. PCR products from the two genomic regions from the two sample points per patient were cloned and 10–15 clones from each sample were sequenced. Genotypic indinavir resistance was present in the four patients after 12 weeks of therapy. The overall protease and C2–V3 env regions quasispecies diversity at time zero was higher than that after 12 weeks of therapy, but this difference was more significant in the two patients who showed a reduction in virus load soon after the initiation of treatment. C2–V3 env sequences indicated that changes during emergence of resistance to indinavir were only detected in the two patients who showed a drastic reduction in virus load. Thus, a temporal relationship was observed between the start of therapy, a drastic reduction in virus load and a drift in the HIV-1 env quasispecies.
-
-
-
-
Virus inactivation in a proportion of human T-cell leukaemia virus type I-infected T-cell clones arises through naturally occurring mutations
More LessHuman T-cell leukaemia virus type I (HTLV-I) is the aetiological agent of adult T-cell leukaemia/lymphoma and tropical spastic paraparesis/HTLV-I-associated myelopathy (TSP/HAM). The trans-activating protein (Tax) of HTLV-I is strongly implicated in cellular proliferation. We examined the tax gene and 5′ long terminal repeat (LTR) sequences in eight naturally infected T-cell clones derived from TSP/HAM-affected individuals who were either productively (proliferate spontaneously) or silently (do not proliferate spontaneously) infected. In two silently infected clones point mutations within the proviruses resulted in truncation of the Tax protein. One clone harboured both a deleterious tax gene mutation and a point mutation in an enhancer element of the 5′ LTR. Sequence changes, immunological escape mutation, integration site context and host cell phenotype may all contribute to the high proportion of latently or silently infected T-cells found in vivo in virus carriers.
-
-
-
A 37 base sequence in the leader region of human T-cell leukaemia virus type I is a high affinity dimerization site but is not essential for virus replication
More LessMutagenesis has demonstrated a region in the human T-cell leukaemia virus type I (HTLV-I) 5′ leader RNA which, when deleted, abolishes stable RNA dimer formation in vitro. We have further mapped, using both in vitro transcribed and synthesized RNA, this site to a 37 base region, which dimerizes with high affinity. When deleted from an HTLV-I Gag–Pol-expressing plasmid which was co-transfected with an envelope protein expressor to produce virions capable of single round infection, the dimer linkage deletion did not affect viral protein production. In addition, virus infectivity was only slightly reduced, to approximately 75–80% of the wild-type.
-
-
-
In vitro infection of cells of the monocytic/macrophage lineage with bovine leukaemia virus
The oncogenic retrovirus bovine leukaemia virus (BLV) primarily infects B cells. Most infected animals remain asymptomatic for long periods of time before an increase in circulating B cells or localized tumours can be observed. This long clinical latency period may be explained by cells of the monocyte/macrophage lineage (M/M) becoming infected and acting as a reservoir for the virus, as shown for other retroviruses (human immunodeficiency virus-1, feline immunodeficiency virus). M/M cells in different stages of differentiation (HL-60, THP-1, U-937, J774, BGM, PM2, primary macrophages of sheep and cows) were cultured with BLV produced by permanently infected donor cells (FLKBLV and BLV-bat2). Donor cells were inhibited from multiplying by either irradiation or treatment with mitomycin C. In other experiments, supernatant from donor cells containing virus was used. In co-culture with the donor cells, the less differentiated monocytic cells showed severe cellular changes such as differentiation, vacuolization, cell lysis and membrane blebbing; apoptosis was a frequent phenomenon. Budding and extracellular viruses were also observed. The more differentiated macrophage cells, although they showed less signs of infection by microscopy, had a complete BLV protein profile, as seen by Western blotting; bands corresponding to p24CA (Gag) and its precursors were clearly seen. In addition, gp51SU was identified by syncytia formation assays. It is concluded that M/M cells may be infected by BLV, the consequences of the infection differing according to the type of cell.
-
-
-
Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus
Linear epitopes on the rabies virus nucleoprotein (N) recognized by six MAbs raised against antigenic sites I (MAbs 6-4, 12-2 and 13-27) and IV (MAbs 6-9, 7-12 and 8-1) were investigated. Based on our previous studies on sites I and IV, 24 consecutively overlapping octapeptides and N- and C-terminal-deleted mutant N proteins were prepared. Results showed that all three site I epitopes studied and two site IV epitopes (for MAbs 8-1 and 6-9) mapped to aa 358–367, and that the other site IV epitope of MAb 7-12 mapped to aa 375–383. Tests using chimeric and truncated proteins showed that MAb 8-1 also requires the N-terminal sequence of the N protein to recognize its binding region more efficiently. Immunofluorescence studies demonstrated that all three site I-specific MAbs and one site IV-specific MAb (7-12) stained the N antigen that was diffusely distributed in the whole cytoplasm; the other two site IV-specific MAbs (6-9 and 8-1) detected only the N antigen in the cytoplasmic inclusion bodies (CIB). An antigenic site II-specific MAb (6-17) also detected CIB-associated N antigen alone. Furthermore, the level of diffuse N antigens decreased after treatment of infected cells with cycloheximide. These results suggest that epitopes at site I are expressed on the immature form of the N protein, but epitope structures of site IV MAbs 6-9 and 8-1 are created and/or exposed only after maturation of the N protein.
-
-
-
The bulk of the phosphorylation of human respiratory syncytial virus phosphoprotein is not essential but modulates viral RNA transcription and replication
More LessThe ability of variants of the human respiratory syncytial virus (HRSV) phosphoprotein (P protein) to support RNA transcription and replication has been studied by using HRSV-based subgenomic replicons. The serine residues normally phosphorylated in P during HRSV infection have been replaced by other residues. The results indicate that the bulk of phosphorylation of P (98%) is not essential for viral RNA transcription or replication but that phosphorylation can modulate these processes.
-
-
-
Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein
More LessA systematic analysis was carried out to identify the amino acid signals that regulate the nucleo-cytoplasmic transport of the influenza A virus nucleoprotein (NP). The analysis involved determining the intracellular localization of eight deleted recombinant NP proteins and 14 chimeric proteins containing the green fluorescent protein fused to different NP fragments. In addition, the subcellular distribution of NP derivatives that contained specific substitutions at serine-3, which is the major phosphorylation site of the A/Victoria/3/75 NP, were analysed. From the results obtained, it is concluded that the NP contains three signals involved in nuclear accumulation and two regions that cause cytoplasmic accumulation of the fusion proteins. One of the karyophilic signals was located at the N terminus of the protein, and the data obtained suggest that the functionality of this signal can be modified by phosphorylation at serine-3. These findings are discussed in the context of the transport of influenza virus ribonucleoprotein complexes into and out of the nucleus.
-
-
-
Growth of infectious salmon anaemia virus in CHSE-214 cells and evidence for phenotypic differences between virus strains
More LessInfectious salmon anaemia virus (ISAV) is a new orthomyxovirus-like virus. Thirteen isolates of ISAV (11 from Canada, one from Norway and one from Scotland) were studied for their replication in the CHSE-214 cell line compared with that in the SHK-1 cell line. All isolates replicated in SHK-1 cells, producing CPE between 3 and 12 days post-inoculation (p.i.). Six Canadian isolates also replicated in CHSE-214 cells, with production of CPE between 4 and 17 days p.i. Analysis of a one-step growth curve of ISAV in CHSE-214 cells showed that progeny virions remained predominantly cell-associated, accounting for the focalized nature of the CPE in the cell monolayer. One isolate (HKS 36) replicated in CHSE-214 cells, as shown by positive RT–PCR results of blind passages, but was non-cytopathic. All of the isolates were analysed for genetic heterogeneity by RT–PCR and RFLP with EcoRI and XhoI in a fraction of genome segment 2. The Canadian isolates showed a different RFLP profile to those of isolates Glesvaer/2/90 from Norway and 390/98 from Scotland. Structural proteins of four isolates, ‘Back Bay 98’, RPC/NB-877, RPC/NB-049 and Glesvaer/2/90, were examined further by SDS–PAGE. All viruses showed four major polypeptides, designated here as VP1–VP4, in Coomassie blue-stained gels. In isolates Glesvaer/2/90 and RPC/NB-877, these viral proteins had estimated molecular masses of 74, 53, 46 and 26·5 kDa, respectively. Viral proteins in isolates ‘Back Bay 98’ and RPC/NB-049 were of similar sizes, except that VP3 was 43 kDa. Taken together, these results show that there are phenotypic differences among strains of ISAV.
-
-
-
Complete genomic RNA sequence of western equine encephalitis virus and expression of the structural genes
The complete nucleotide sequence of the 71V-1658 strain of western equine encephalitis virus (WEE) was determined (minus 25 nucleotides from the 5′ end). A 5′ RACE reaction was used to sequence the 5′ terminus from WEE strain CBA87. The deduced WEE genome was 11508 nucleotides in length, excluding the 5′ cap nucleotide and 3′ poly(A) tail. The nucleotide composition was 28% A, 25% C, 25% G and 22% U. Comparison with partial WEE sequences of strain 5614 (nsP2–nsP3 of the nonstructural region) and strain BFS1703 (26S structural region) revealed comparatively little variation; a total of 149 nucleotide differences in 8624 bases (1·7% divergence), of which only 28% (42 nucleotides) altered the encoded amino acids. Comparison of deduced nsP1 and nsP4 amino acid sequences from WEE with the corresponding proteins from eastern equine encephalitis virus (EEE) yielded identities of 84·9 and 83·8%, respectively. Previously uncharacterized stem–loop structures were identified in the nontranslated terminal regions. A cDNA clone of the 26S region encoding the structural polyprotein of WEE strain 71V-1658 was placed under the control of a cytomegalovirus promoter and transfected into tissue culture cells. The viral envelope proteins were functionally expressed in tissue culture, as determined by histochemical staining with monoclonal antibodies that recognize WEE antigens, thus, forming the initial step in the investigation of subunit vaccines to WEE.
-
-
-
Linkage of an alphavirus host-range restriction to the carbohydrate-processing phenotypes of the host cell
More LessThe Sindbis virus mutant NE2G216 retains PE2 in place of E2 in its virion structure. NE2G216 is a host-range mutant that replicates with near-normal kinetics in vertebrate cells, but displays severely restricted growth in cultured mosquito cells (C6/36) due to defects in the virus maturation process. In this study we tested the hypothesis that the host-range phenotype of NE2G216 was linked to the differences in carbohydrate-processing phenotypes between vertebrate and arthropod cells. Arthropod cell-derived glycoproteins are distinguishable from those synthesized in vertebrate cells by the absence of complex- and hybrid-type N-linked oligosaccharides. To test our hypothesis we compared the growth of the wild-type virus, TRSB, NE2G216 and three PE2-containing, C6/36 cell-adapted variants, in vertebrate cells treated with 1-deoxymannojirimycin (1-dMM). 1-dMM inhibits the Golgi α-mannosidase I enzyme and limits oligosaccharide processing to high-mannose forms (Man8–9GlcNAc2). The growth of TRSB was not restricted by the action of 1-dMM; however, NE2G216 was restricted in a dose-dependent manner. In contrast, the growth of each PE2-containing, C6/36 cell-adapted mutant was enhanced by low concentrations of 1-dMM (up to 1500%) and was only slightly affected by the higher concentrations. These results demonstrate that virion maturation functions of NE2G216 are sensitive to the structure of cis-linked oligosaccharides, and indicate that the carbohydrate-processing phenotypes of the host cell can influence viral host-range and function as a selective pressure in alphavirus evolution.
-
-
-
Genetic, geographical and temporal variation of porcine reproductive and respiratory syndrome virus in Illinois
More LessPorcine reproductive and respiratory syndrome virus (PRRSV) ORF5 gene sequences were generated by RT–PCR from 55 field isolates collected in Illinois and eastern Iowa. Spatial and temporal patterns of genetic variation in the virus were examined on a local geographical scale in order to test the hypothesis that the genetic similarity of PRRSV isolates (measured as their percentage pairwise ORF5 nucleotide similarity) was positively correlated with their geographical proximity. Levels of genetic variability in the Illinois/eastern Iowa PRRSV sample were similar to levels of variability seen across broader geographical regions within North America. The genetic similarity of isolates did not correlate with their geographical distance. These results imply that the movement of PRRSV onto farms does not generally occur via distance-limited processes such as wind or wildlife vectors, but more typically occurs via the long-distance transport of animals or semen. Genetic distances between PRRSV isolates collected from the same farms at different times increased as the time separating the collection events increased. This result implies rapid movement of new genetic types of PRRSV into and out of farms. PRRSV ORF5 displayed a pattern of third-codon-position diversity bias that was not evident in a geographically comparable sample of pseudorabies virus (a swine alphaherpesvirus) gC gene sequences. This result provides evidence that PRRSV ORF5 is experiencing stabilizing selection against structural novelty. Despite high genetic variability at all geographical levels, PRRSV ORF5 nevertheless contained potentially antigenic regions that were invariant at the amino acid level. These regions should make effective vaccine targets if they prove to be immunogenic.
-
-
-
High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA
More LessThe nucleocapsid (N) protein of mouse hepatitis virus (MHV) is the major virion structural protein. It associates with both viral genomic RNA and subgenomic mRNAs and has structural and non-structural roles in replication including viral RNA-dependent RNA transcription, genome replication, encapsidation and translation. These processes all involve RNA–protein interactions between the N protein and viral RNAs. To better understand the RNA-binding properties of this multifunctional protein, the N protein was expressed in Escherichia coli as a chimeric protein fused to glutathione-S-transferase (GST). Biochemical analyses of RNA-binding properties were performed on full-length and partial N protein segments to define the RNA-binding domain. The full-length N protein and the GST–N protein fusion product had similar binding activities with a dissociation constant (K d) of 14 nM when the MHV 5′-leader sequence was used as ligand. The smallest N protein fragment which retained RNA-binding activity was a 55 aa segment containing residues 177–231 which bound viral RNA with a K d of 32 nM. A consensus viral sequence recognized by the N protein was inferred from these studies; AAUCYAAAC was identified to be the potential minimum ligand for the N protein. Although the core UCYAA sequence is often tandemly repeated in viral genomes, ligands containing one or more repeats of UCYAA showed no difference in binding to the N protein. Together these data demonstrate a high-affinity, specific interaction between the N protein and a conserved RNA sequence present at the 5′-ends of MHV mRNA.
-
-
-
The entire nucleotide sequence of two hepatitis G virus isolates belonging to a novel genotype: isolation in Myanmar and Vietnam
More LessA novel genotype of hepatitis G virus (HGV) was recently identified in sera of subjects from countries in South-East Asia. These isolates were recovered from serum of Myanmarese (designated HGV-MY14) and Vietnamese (designated HGV-VT48) subjects, respectively. To characterize the viral genome in more detail, the full-length nucleotide sequence of the two different HGV isolates belonging to the novel genotype was cloned. Both HGV isolates were composed of 9228 nt and had a single open reading frame spanning 8529 nt and encoding 2843 aa residues. The isolates differed from previously reported HGV/GBV-C isolates types 1 to 3 by 13–15% (nucleotide sequence) and 4–6% (amino acid sequence). The putative core region of both isolates was not clearly identifiable as it consisted of only 16 aa residues. Based on phylogenetic analysis of full-length genome sequences and 5′-UTR sequences, HGV-MY14 and HGV-VT48 isolates can be classified as a novel genotype, designated type 4.
-
-
-
Expression and processing of the canine calicivirus capsid precursor
More LessThe ORF2 product of canine calicivirus (CaCV) was identified and its processing in mammalian cells was analysed. Immunoblot analysis revealed the presence of the 75 kDa capsid precursor in addition to a 57 kDa capsid protein and a 22 kDa N-terminal polypeptide in CaCV-infected cells treated at an elevated temperature. When the CaCV ORF2 was expressed in a transient mammalian expression system, only the 75 kDa precursor was detected in immunoblot analysis, suggesting that no post-translational processing occurred in this system. However, the precursor was processed to a 57 kDa protein and a 22 kDa polypeptide by the proteinase of feline calicivirus (FCV) when this was co-expressed with ORF2. Processing was blocked by site-directed mutagenesis of the putative cleavage site in the capsid precursor. The results indicate that the proteinase of FCV can cleave the capsid precursor of CaCV to produce the mature capsid protein and that CaCV may have a similar proteinase.
-
-
-
The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation
More LessThe 2A protein appears to be diverse among picornaviruses, in contrast to the other non-structural proteins, which have homologous structures and functions. In enteroviruses and rhinoviruses, 2A is a trypsin-like protease involved in protein processing and in shut-off of host-cell macromolecular synthesis. The aphthovirus and cardiovirus 2A is associated with an unusual processing event at the 2A/2B junction. It is shown here that the 2A protein of several diverse picornaviruses, the human parechoviruses, Aichi virus and avian encephalomyelitis virus, possess previously unrecognized conserved motifs and are likely to have a common function. Moreover, these motifs, a conserved histidine and flanking amino acids, an asparagine–cysteine dipeptide and a putative transmembrane domain, are characteristic of a family of cellular proteins, at least two of which are involved in the control of cell growth. These observations have important implications for an understanding of picornavirus genome structure and evolution, as well as pointing to possible functions of 2A in these viruses.
-
-
-
Interactions in vivo between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA-dependent RNA polymerase, VP1
More LessLittle is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein–protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to the LexA DNA-binding domain and the B42 transactivation domain. A heterologous interaction between VP1 and VP3, and homologous interactions of pVP2, VP3, VP5 and possibly VP1, were found by co-expression of the fusion proteins in Saccharomyces cerevisiae. The presence of the VP1–VP3 complex in IBDV-infected cells was confirmed by co-immunoprecipitation studies. Kinetic analyses showed that the complex of VP1 and VP3 is formed in the cytoplasm and eventually is released into the cell-culture medium, indicating that VP1–VP3 complexes are present in mature virions. In IBDV-infected cells, VP1 was present in two forms of 90 and 95 kDa. Whereas VP3 initially interacted with both the 90 and 95 kDa proteins, later it interacted exclusively with the 95 kDa protein both in infected cells and in the culture supernatant. These results suggest that the VP1–VP3 complex is involved in replication and packaging of the IBDV genome.
-
- Animal: DNA Viruses
-
-
-
Replication of equine herpesvirus type 1 in freshly isolated equine peripheral blood mononuclear cells and changes in susceptibility following mitogen stimulation
More LessIn the present study, the outcome of an inoculation of equine peripheral blood mononuclear cells (PBMC) with equine herpesvirus type 1 (EHV-1) was studied in vitro. Cytoplasmic and plasma membrane expression of viral antigens, intra- and extracellular virus titres, and plaque formation in co-culture were determined. EHV-1 replicated in monocytes, although in a highly restricted way. Viral antigens were found at maximum levels (8·7% of the monocytes) at 12 h post-infection. The infection was productive in 0·16% of the monocytes. The virus yield was 100·7 TCID50 per productive cell. In a population of resting lymphocytes, 0·9% of cells were infected and less than 0·05% produced infectious virus. After prestimulation with different mitogens, the number of infected lymphocytes increased four to twelve times. The susceptible lymphocytes were T-lymphocytes. In mitogen-stimulated lymphocytes, clear expression of viral antigens was found on the plasma membrane.
-
-
-
-
Cloning and epitope mapping of a functional partial fusion receptor for human cytomegalovirus gH
More LessA cDNA clone encoding a partial putative human cytomegalovirus (HCMV) gH fusion receptor (CMVFR) was previously identified. In this report, the cDNA sequence of CMVFR was determined and the role of this CMVFR in HCMV/cell fusion was confirmed by rendering fusion-incompetent MOLT-4 cells susceptible to fusion following transfection with receptor cDNA. Blocking experiments using recombinant gH or either of two MAbs (against recombinant gH or purified viral gH:gL) provided additional evidence for the role of gH binding to this protein in virus fusion. An HCMV-binding domain of 12 aa in the middle hydrophilic region of CMVFR was identified by fusion blocking studies using synthetic receptor peptides. The 1368 bp cDNA of CMVFR contained a predicted ORF of 345 aa with two potential membrane-spanning domains and several possible nuclear localization signals. A search of sequence databases indicated that CMVFR is a novel protein. Further characterization of this cell membrane protein that confers susceptibility to fusion with the viral envelope should provide important information about the mechanism by which HCMV infects cells.
-
-
-
Transactivation activity of the human cytomegalovirus IE2 protein occurs at steps subsequent to TATA box-binding protein recruitment
More LessThe IE2 protein of human cytomegalovirus transactivates viral and cellular promoters through a wide variety of cis-elements, but the mechanism of its action has not been well characterized. Here, IE2–Sp1 synergy and IE2–TATA box-binding protein (TBP) interaction are examined by artificial recruitment of either Sp1 or TBP to the promoter. It was found that IE2 could cooperate with DNA-bound Sp1. A 117 amino acid glutamine-rich fragment of Sp1, which can interact with Drosophila TAFII110 and human TAFII130, was sufficient for the augmentation of IE2-driven transactivation. In binding assays in vitro, IE2 interacted directly with the C-terminal region of Sp1, which contains the zinc finger DNA-binding domain, but not with its transactivation domain, suggesting that synergy between IE2 and the transactivation domain of Sp1 might be mediated by other proteins such as TAF or TBP. It was also found that TBP recruitment to the promoter markedly increased IE2-mediated transactivation. Thus, IE2 acts synergistically with DNA-bound Sp1 and DNA-bound TBP. These results suggest that, in human cytomegalovirus IE2 transactivation, Sp1 functions at an early step such as recruitment of TBP and IE2 acts to accelerate rate-limiting steps after TBP recruitment.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month

Most cited Most Cited RSS feed
-
-
-
-
ICTV Virus Taxonomy Profile: Rhabdoviridae 2022
Peter J. Walker, Juliana Freitas-Astúa, Nicolas Bejerman, Kim R. Blasdell, Rachel Breyta, Ralf G. Dietzgen, Anthony R. Fooks, Hideki Kondo, Gael Kurath, Ivan V. Kuzmin, Pedro Luis Ramos-González, Mang Shi, David M. Stone, Robert B. Tesh, Noël Tordo, Nikos Vasilakis, Anna E. Whitfield and ICTV Report Consortium
-
- More Less