Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein–protein interactions , all possible interactions were tested by fusing the viral proteins to the LexA DNA-binding domain and the B42 transactivation domain. A heterologous interaction between VP1 and VP3, and homologous interactions of pVP2, VP3, VP5 and possibly VP1, were found by co-expression of the fusion proteins in . The presence of the VP1–VP3 complex in IBDV-infected cells was confirmed by co-immunoprecipitation studies. Kinetic analyses showed that the complex of VP1 and VP3 is formed in the cytoplasm and eventually is released into the cell-culture medium, indicating that VP1–VP3 complexes are present in mature virions. In IBDV-infected cells, VP1 was present in two forms of 90 and 95 kDa. Whereas VP3 initially interacted with both the 90 and 95 kDa proteins, later it interacted exclusively with the 95 kDa protein both in infected cells and in the culture supernatant. These results suggest that the VP1–VP3 complex is involved in replication and packaging of the IBDV genome.


Article metrics loading...

Loading full text...

Full text loading...



  1. Azad, A. A., Jagadish, M. N., Brown, M. A. & Hudson, P. J. (1987). Deletion mapping and expression in Escherichia coli of the large genomic segment of a birnavirus. Virology 161, 145-152.[CrossRef] [Google Scholar]
  2. Bartel, P., Chien, C. T., Sternglanz, R. & Fields, S. (1993). Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14, 920-924. [Google Scholar]
  3. Becht, H. & Mller, H. (1991). Infectious bursal disease – B cell dependent immunodeficiency syndrome in chickens. Behring Institute Mitteilungen 217225. [Google Scholar]
  4. Becht, H., Müller, H. & Müller, H. K. (1988). Comparative studies on structural and antigenic properties of two serotypes of infectious bursal disease virus. Journal of General Virology 69, 631-640.[CrossRef] [Google Scholar]
  5. Black, E. P., Moussatche, N. & Condit, R. C. (1998). Characterization of the interactions among vaccinia virus transcription factors G2R, A18R, and H5R. Virology 245, 313-322.[CrossRef] [Google Scholar]
  6. Bottcher, B., Kiselev, N. A., Stel’Mashchuk, V. Y., Perevozchikova, N. A., Borisov, A. V. & Crowther, R. A. (1997). Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. Journal of Virology 71, 325-330. [Google Scholar]
  7. Brent, R. & Ptashne, M. (1984). A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene. Nature 312, 612-615.[CrossRef] [Google Scholar]
  8. Chien, C. T., Bartel, P. L., Sternglanz, R. & Fields, S. (1991). The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proceedings of the National Academy of Sciences, USA 88, 9578-9582.[CrossRef] [Google Scholar]
  9. Cuconati, A., Xiang, W., Lahser, F., Pfister, T. & Wimmer, E. (1998). A protein linkage map of the P2 nonstructural proteins of poliovirus. Journal of Virology 72, 1297-1307. [Google Scholar]
  10. Dobos, P. (1995a). The molecular biology of infectious pancreatic necrosis virus (IPNV). Annual Review of Fish Diseases 5, 25-54.[CrossRef] [Google Scholar]
  11. Dobos, P. (1995b). Protein-primed RNA synthesis in vitro by the virion-associated RNA polymerase of infectious pancreatic necrosis virus. Virology 208, 19-25.[CrossRef] [Google Scholar]
  12. Dobos, P., Hill, B. J., Hallett, R., Kells, D. T., Becht, H. & Teninges, D. (1979). Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. Journal of Virology 32, 593-605. [Google Scholar]
  13. Estojak, J., Brent, R. & Golemis, E. A. (1995). Correlation of two-hybrid affinity data with in vitro measurements. Molecular and Cellular Biology 15, 5820-5829. [Google Scholar]
  14. Fahey, K. J., O’Donnell, I. J. & Azad, A. A. (1985). Characterization by Western blotting of the immunogens of infectious bursal disease virus. Journal of General Virology 66, 1479-1488.[CrossRef] [Google Scholar]
  15. Fields, S. & Song, O. (1989). A novel genetic system to detect protein–protein interactions. Nature 340, 245-246.[CrossRef] [Google Scholar]
  16. Fields, S. & Sternglanz, R. (1994). The two-hybrid system: an assay for protein–protein interactions. Trends in Genetics 10, 286-292.[CrossRef] [Google Scholar]
  17. Granzow, H., Birghan, C., Mettenleiter, T. C., Beyer, J., Kollner, B. & Mundt, E. (1997). A second form of infectious bursal disease virus-associated tubule contains VP4. Journal of Virology 71, 8879-8885. [Google Scholar]
  18. Hirai, K. & Shimakura, S. (1974). Structure of infectious bursal disease virus. Journal of Virology 14, 957-964. [Google Scholar]
  19. Hong, Y., Levay, K., Murphy, J. F., Klein, P. G., Shaw, J. G. & Hunt, A. G. (1995). A potyvirus polymerase interacts with the viral coat protein and VPg in yeast cells. Virology 214, 159-166.[CrossRef] [Google Scholar]
  20. Hudson, P. J., McKern, N. M., Power, B. E. & Azad, A. A. (1986). Genomic structure of the large RNA segment of infectious bursal disease virus. Nucleic Acids Research 14, 5001-5012.[CrossRef] [Google Scholar]
  21. Hughes, S. R., Goyal, S., Sun, J. E., Gonzalez-DeWhitt, P., Fortes, M. A., Riedel, N. G. & Sahasrabudhe, S. R. (1996). Two-hybrid system as a model to study the interaction of beta-amyloid peptide monomers. Proceedings of the National Academy of Sciences, USA 93, 2065-2070.[CrossRef] [Google Scholar]
  22. Ismail, N. M., Saif, Y. M. & Moorhead, P. D. (1988). Lack of pathogenicity of five serotype 2 infectious bursal disease viruses in chickens. Avian Diseases 32, 757-759.[CrossRef] [Google Scholar]
  23. Jackwood, D. H. & Saif, Y. M. (1987). Antigenic diversity of infectious bursal disease viruses. Avian Diseases 31, 766-770.[CrossRef] [Google Scholar]
  24. Jackwood, D. J., Saif, Y. M. & Hughes, J. H. (1984). Nucleic acid and structural proteins of infectious bursal disease virus isolates belonging to serotypes I and II. Avian Diseases 28, 990-1006.[CrossRef] [Google Scholar]
  25. Jagadish, M. N., Staton, V. J., Hudson, P. J. & Azad, A. A. (1988). Birnavirus precursor polyprotein is processed in Escherichia coli by its own virus-encoded polypeptide. Journal of Virology 62, 1084-1087. [Google Scholar]
  26. Kibenge, F. S. B., Dhillon, A. S. & Russell, R. G. (1988). Biochemistry and immunology of infectious bursal disease virus. Journal of General Virology 69, 1757-1775.[CrossRef] [Google Scholar]
  27. Kibenge, F. S., McKenna, P. K. & Dybing, J. K. (1991). Genome cloning and analysis of the large RNA segment (segment A) of a naturally avirulent serotype 2 infectious bursal disease virus. Virology 184, 437-440.[CrossRef] [Google Scholar]
  28. Kibenge, F. S., Qian, B., Cleghorn, J. R. & Martin, C. K. (1997). Infectious bursal disease virus polyprotein processing does not involve cellular proteases. Archives of Virology 142, 2401-2419.[CrossRef] [Google Scholar]
  29. Kibenge, F. S., Qian, B., Nagy, E., Cleghorn, J. R. & Wadowska, D. (1999). Formation of virus-like particles when the polyprotein gene (segment A) of infectious bursal disease virus is expressed in insect cells. Canadian Journal of Veterinary Research 63, 49-55. [Google Scholar]
  30. Li, B. & Fields, S. (1993). Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB Journal 7, 957-963. [Google Scholar]
  31. Lombardo, E., Maraver, A., Castón, J. R., Rivera, J., Fernández-Arias, A., Serrano, A., Carrascosa, J. L. & Rodriguez, J. F. (1999). VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. Journal of Virology 73, 6973-6983. [Google Scholar]
  32. McFerran, J. B., McNulty, M. S., McKillop, E. R., Connor, T. J., McCracken, R. M., Collins, D. S. & Allan, G. N. (1980). Isolation and serological studies with infectious bursal disease viruses from fowl, turkeys and ducks: demonstration of a second serotype. Avian Pathology 9, 395-404.[CrossRef] [Google Scholar]
  33. Magyar, G., Chung, H. K. & Dobos, P. (1998). Conversion of VP1 to VPg in cells infected by infectious pancreatic necrosis virus. Virology 245, 142-150.[CrossRef] [Google Scholar]
  34. Morgan, M. M., Macreadie, I. G., Harley, V. R., Hudson, P. J. & Azad, A. A. (1988). Sequence of the small double-stranded RNA genomic segment of infectious bursal disease virus and its deduced 90-kDa product. Virology 163, 240-242.[CrossRef] [Google Scholar]
  35. Moscovici, C., Moscovici, M. G., Jimenez, H., Lai, M. M., Hayman, M. J. & Vogt, P. K. (1977). Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11, 95-103.[CrossRef] [Google Scholar]
  36. Müller, H. & Becht, H. (1982). Biosynthesis of virus-specific proteins in cells infected with infectious bursal disease virus and their significance as structural elements for infectious virus and incomplete particles. Journal of Virology 44, 384-392. [Google Scholar]
  37. Müller, H. & Nitschke, R. (1987). The two segments of the infectious bursal disease virus genome are circularized by a 90,000-Da protein. Virology 159, 174-177.[CrossRef] [Google Scholar]
  38. Müller, H., Scholtissek, C. & Becht, H. (1979). The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. Journal of Virology 31, 584-589. [Google Scholar]
  39. Mundt, E., Beyer, J. & Müller, H. (1995). Identification of a novel viral protein in infectious bursal disease virus-infected cells. Journal of General Virology 76, 437-443.[CrossRef] [Google Scholar]
  40. Mundt, E., Kollner, B. & Kretzschmar, D. (1997). VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. Journal of Virology 71, 5647-5651. [Google Scholar]
  41. Petek, M., D’Aprile, P. N. & Cancellotti, F. (1973). Biological and physico-chemical properties of the infectious bursal disease virus (IBDV). Avian Pathology 2, 135-152. [Google Scholar]
  42. Quadt, R., Rosdorff, H. J., Hunt, T. W. & Jaspars, E. M. (1991). Analysis of the protein composition of alfalfa mosaic virus RNA-dependent RNA polymerase. Virology 182, 309-315.[CrossRef] [Google Scholar]
  43. Sandino, A. M., Fernandez, J., Pizarro, J., Vasquez, M. & Spencer, E. (1994). Structure of rotavirus particle: interaction of the inner capsid protein VP6 with the core polypeptide VP3. Biological Research 27, 39-48. [Google Scholar]
  44. Spies, U., Müller, H. & Becht, H. (1987). Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products. Virus Research 8, 127-140.[CrossRef] [Google Scholar]
  45. Spies, U., Müller, H. & Becht, H. (1989). Nucleotide sequence of infectious bursal disease virus genome segment A delineates two major open reading frames. Nucleic Acids Research 17, 7982.[CrossRef] [Google Scholar]
  46. Van Aelst, L., Barr, M., Marcus, S., Polverino, A. & Wigler, M. (1993). Complex formation between RAS and RAF and other protein kinases. Proceedings of the National Academy of Sciences, USA 90, 6213-6217.[CrossRef] [Google Scholar]
  47. Xiang, W., Cuconati, A., Paul, A. V., Cao, X. & Wimmer, E. (1995). Molecular dissection of the multifunctional poliovirus RNA-binding protein 3AB. RNA 1, 892-904. [Google Scholar]
  48. Xiang, W., Cuconati, A., Hope, D., Kirkegaard, K. & Wimmer, E. (1998). Complete protein linkage map of poliovirus P3 proteins: interaction of polymerase 3Dpol with VPg and with genetic variants of 3AB. Journal of Virology 72, 6732-6741. [Google Scholar]
  49. Yang, X., Hubbard, E. J. & Carlson, M. (1992). A protein kinase substrate identified by the two-hybrid system. Science 257, 680-682.[CrossRef] [Google Scholar]
  50. Yao, K., Goodwin, M. A. & Vakharia, V. N. (1998). Generation of a mutant infectious bursal disease virus that does not cause bursal lesions. Journal of Virology 72, 2647-2654. [Google Scholar]
  51. Ye, Q. & Worman, H. J. (1995). Protein–protein interactions between human nuclear lamins expressed in yeast. Experimental Cell Research 219, 292-298.[CrossRef] [Google Scholar]
  52. Ziermann, R. & Ganem, D. (1996). Homologous and heterologous complementation of HBV and WHV capsid and polymerase functions in RNA encapsidation. Virology 219, 350-356.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error