1887

Abstract

The nucleotide sequences of the large (L) genes of ten measles virus (MV) strains were determined. These strains included the Moraten and Rubeovax vaccine strains and their Edmonston wild-type (wt) progenitor, two additional vaccine strains and five genotypically divergent wt isolates. The nucleotide and predicted amino acid sequences were compared with six previously sequenced L genes and the number and location of variable amino acid positions were characterized. The recent wt isolates demonstrated the greatest amount of variability found to date in the highly conserved L protein. Three full-length wt L proteins were expressed in mammalian cells and their ability to form a complex with the MV phosphoprotein was demonstrated. While no set of amino acid substitutions associated consistently with wt or vaccine strains was identified, these data will provide a basis for the analysis of the activity of L proteins from vaccine and wt viruses in a functional assay.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-7-1617
1999-07-01
2022-09-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/7/0801617a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-7-1617&mimeType=html&fmt=ahah

References

  1. Bellini W. J., Rota P. A. 1998; Genetic diversity of wild-type measles viruses: implications for global measles elimination programs. Emerging Infectious Diseases 4:29–35
    [Google Scholar]
  2. Blumberg B. M., Crowley J. C., Silverman J. I., Menonna J., Cook S. D., Dowling P. C. 1988; Measles virus L protein evidences elements of ancestral RNA polymerase. Virology 164:487–497
    [Google Scholar]
  3. Buynak E. B., Peck H. M., Creamer A. A., Goldner H., Hilleman M. R. 1962; Differentiation of virulent from avirulent measles strains. American Journal of Diseases of Children 103:290–303
    [Google Scholar]
  4. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  5. Crowe J. E. Jr, Firestone C.-Y., Whitehead S. S., Collins P. L., Murphy B. R. 1996; Acquisition of the ts phenotype by a chemically mutagenized cold-passaged human respiratory syncytial virus vaccine candidate results from the acquisition of a single mutation in the polymerase (L) gene. Virus Genes 13:269–273
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  7. Enders J. F., Peebles T. C. 1954; Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proceedings of the Society for Experimental Biology & Medicine 86:277–286
    [Google Scholar]
  8. Enders J. F., Katz S. L., Milovanovic M. V., Holloway A. 1960; Studies on an attenuated measles-virus vaccine. New England Journal of Medicine 263:153–159
    [Google Scholar]
  9. Felsenstein J. 1988; Phylogenies from molecular sequences: inference and reliability. Annual Reviews of Genetics 22:521–565
    [Google Scholar]
  10. Fukuda A., Sugiura A. 1983; Temperature-dependent growth restriction in measles vaccine strains. Japanese Journal of Medical Science and Biology 36:331–335
    [Google Scholar]
  11. Hilleman M. R., Buynak E. B., Weibel R. E., Stokes J. Jr, Whitman J. E. Jr, Leagus M. B. 1968; Development and evaluation of the Moraten measles virus vaccine. Journal oftheAmerican MedicalAssociation 206:587–590
    [Google Scholar]
  12. Horikami S. M., Smallwood S., Bankamp B., Moyer S. A. 1994; An amino-proximal domain of the L protein binds to the P protein in the measles virus RNA polymerase complex. Virology 205:540–545
    [Google Scholar]
  13. Hsin C., Hsu T., Tseng K., Chang S., Wu W., Chu C., Ku Y., Yang C., Ho L. 1975; Clinical and immunologic observations on two lines of attenuated measles vaccine virus upon passage in chick embryo cell culture. Chinese Medical Journal 1:283–286
    [Google Scholar]
  14. Huang C., Chia P., Chu F., Kuo K., Wang H., Wu T., Wu H. 1962; Studies on attenuated measles vaccine. I. Clinical and immunologic response to measles virus attenuated in human amnion cells. Chinese Medical Journal 81:9–22
    [Google Scholar]
  15. Huber M. 1993 Expression of measles virus genes: analysis of interactions between nucleocapsid protein and phosphoprotein PhD thesis Institute of Molecular Biology; University of Zurich, Zurich:
    [Google Scholar]
  16. Ikic D., Juzbasic M., Beck M., Hrabar A., Cimbur-Schreiber T. 1972; Attenuation and characterisation of Edmonston-Zagreb measles virus. Annales Immunologiae Hungaricae 16:175–181
    [Google Scholar]
  17. Juhasz K., Whitehead S. S., Bui P. T., Biggs J. M., Crowe J. E., Boulanger C. A., Collins P. L., Murphy B. R. 1997; The temperature-sensitive (ts) phenotype of a cold-passaged (cp) live attenuated respiratory syncytial virus vaccine candidate, designated cpts530, results from a single amino acid substitution in the L protein. Journal of Virology 71:5814–5819
    [Google Scholar]
  18. Komase K., Rima B. K., Pardowitz I., Kunz C., Billeter M. A., ter Meulen V., Baczko K. 1995; A comparison of nucleotide sequences of measles virus L genes derived from wild-type viruses and SSPE brain tissues. Virology 208:795–799
    [Google Scholar]
  19. McCrumb F. R. Jr, Hornick R. B., Kress S., Schluederberg A. E., Snyder M. J., Musser S., Higbee T. 1961; Studies with live attenuated measles-virus vaccine. III. Development of a practical method for large-scale immunization. American Journal of Diseases of Children 101:708–712
    [Google Scholar]
  20. McIlhatton M. A., Curran M. D., Rima B. K. 1997; Nucleotide sequence analysis of the large (L) genes of phocine distemper virus and canine distemper virus (corrected sequence). Journal of General Virology 78:571–576
    [Google Scholar]
  21. Mori T., Sasaki K., Hashimoto H., Makino S. 1993; Molecular cloning and complete nucleotide sequence of genomic RNA of the AIK-C strain of attenuated measles virus. Virus Genes 7:67–81
    [Google Scholar]
  22. Poch O., Blumberg B. M., Bougueleret L., Tordo N. 1990; Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. Journal of General Virology 71:1153–1162
    [Google Scholar]
  23. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dotsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles viruses from cloned DNA. EMBO Journal 14:5773–5784
    [Google Scholar]
  24. Reilly C. M., Stokes J. Jr, Buynak E. B., Goldner H., Hilleman M. R. 1961; Living attenuated measles-virus vaccine in early infancy: studies of the role of passive antibody in immunization. New England Journal of Medicine 265:165–169
    [Google Scholar]
  25. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. 1992; Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188:135–142
    [Google Scholar]
  26. Rota J. S., Wang Z.-D., Rota P. A., Bellini W. J. 1994a; Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Research 31:317–330
    [Google Scholar]
  27. Rota P. A., Bloom A. E., Vanchiere J. A., Bellini W. J. 1994b; Evolution of the nucleoprotein and matrix genes of wild-type strains of measles virus isolated from recent epidemics. Virology 198:724–730
    [Google Scholar]
  28. Rota J. S., Heath J. L., Rota P. A., King G. E., Celma M. L., Carabana J., Fernandez-Munoz R., Brown D., Jin L., Bellini W. J. 1996; Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination. Journal of Infectious Diseases 173:32–37
    [Google Scholar]
  29. Rota J. S., Rota P. A., Redd S. B., Redd S. C., Pattamadilok S., Bellini W. J. 1998; Genetic analysis of measles viruses isolated in the United States, 1995-1996. Journal of Infectious Diseases 177:204–208
    [Google Scholar]
  30. Sidhu M. S., Chan J., Kaelin K., Spielhofer P., Radecke F., Schneider H., Masurekar M., Dowling P. C., Billeter M. A., Udem S. A. 1995; Rescue of synthetic measles virus minireplicons: measles genomic termini direct efficient expression and propagation of a reporter gene. Virology 208:800–807
    [Google Scholar]
  31. Skiadopoulos M. H., Durbin A. P., Tatem J. M., Wu S. L., Paschalis M., Tao T., Collins P. L., Murphy B. R. 1998; substitutions in the L protein of the human parainfluenza virus type 3 cp45 live attenuated vaccine candidate contribute to its temperature-sensitive and attenuation phenotypes. Journal of Virology 72:1762–1768
    [Google Scholar]
  32. Takeda M., Kato A., Kobune F., Sakata H., Li Y., Shioda T., Sakai Y., Asakawa M., Nagai Y. 1998; Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. Journal of Virology 72:8690–8696
    [Google Scholar]
  33. WHO 1998; Standardization of the nomenclature for describing the genetic characteristics of wild-type measles viruses. Weekly Epidemiological Record 73:265–272
    [Google Scholar]
  34. Xiang J. Z., Chen Z. H. 1983; Measles vaccine in the People’s Republic of China. Reviews of Infectious Diseases 5:506–510
    [Google Scholar]
  35. Xu W., Tamin A., Rota J. S., Zhang L., Bellini W. J., Rota P. A. 1998; New genetic group of measles virus isolated in the People’s Republic of China. Virus Research 54:147–156
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-7-1617
Loading
/content/journal/jgv/10.1099/0022-1317-80-7-1617
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error