1887

Abstract

Human T-cell leukaemia/lymphoma virus type 1 (HTLV-1) is a pathogenic retrovirus responsible for a number of inflammatory pathologies and adult T-cell leukaemia. Although T-cell tropic in vivo, HTLV-1 can infect a wide variety of cell types in vitro. Cell-to-cell spread of HTLV-1 may require specific binding of envelope to its cellular receptor, with other cell-surface molecules facilitating fusion. Here it is shown that intercellular adhesion molecule-1 or -3 (ICAM-1, ICAM-3) or vascular cell adhesion molecule-1 (VCAM-1) are required for syncytium formation of K562 with HTLV-1-infected MT2 cells but not C91-PL cells. The effect of ICAMs and VCAM-1 on MT2-induced fusion can be blocked by antibodies that bind beta-integrins. These fusion co-factor molecules are effective only when present in combination with HTLV-1 receptor-bearing cells and are not sufficient to mediate syncytium formation alone. The results suggest that engagement of HTLV-1-infected cells with susceptible target cells requires the simultaneous binding of viral envelope glycoprotein to the cellular receptor and co-factor molecules to beta-integrins. The tissue-specific expression of adhesion molecules might therefore influence HTLV-1 virus tropism and pathogenic changes associated with syncytium formation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-6-1429
1999-06-01
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/6/0801429a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-6-1429&mimeType=html&fmt=ahah

References

  1. Berendt A. R., McDowall A., Craig A. G., Bates P. A., Sternberg M. J., Marsh K., Newbold C. I., Hogg N. 1992; The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1-binding site. Cell 68:71–81
    [Google Scholar]
  2. Carrington C. V. F., Weiss R. A., Schulz T. F. 1994; A truncated HTLV-I envelope protein, lacking the hydrophobic membrane anchor domain, is associated with cellular membranes and virions. Virology 202:61–69
    [Google Scholar]
  3. Crowe D. T., Chiu H., Fong S., Weissman I. L. 1994; Regulation of the avidity of integrin alpha 4 beta 7 by the beta 7 cytoplasmic domain. Journal of Biological Chemistry 269:14411–14418
    [Google Scholar]
  4. Daenke S., Nightingale S., Cruickshank J. K., Bangham C. R. M. 1990; Sequence variants of human T-cell lymphotropic virus type I from patients with tropical spastic paraparesis and adult T-cell leukemia do not distinguish neurological from leukemic isolates. Journal of Virology 64:1278–1282
    [Google Scholar]
  5. Dezzutti C. S., Rudolph D. L., Lal R. B. 1995; Infection with human T-lymphotropic viruses types I and II results in alterations of cellular receptors, including the up-modulation of T-cell counterreceptors CD40, CD54, and CD80 (B7-1). Clinical and Diagnostic Laboratory Immunology 2:349–355
    [Google Scholar]
  6. Fauci A. S. 1996; Host factors and the pathogenesis of HIV-induced disease. Nature 384:529–534
    [Google Scholar]
  7. Fortin J.-F., Cantin R., Lamontagne G., Tremblay M. 1997; Host- derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. Journal of Virology 71:3588–3596
    [Google Scholar]
  8. Gahmberg C. G., Tolvanen M., Kotovuori P. 1997; Leukocyte adhesion - structure and function of human leukocyte β 2-integrins and their cellular ligands. European Journal of Biochemistry 245:215–232
    [Google Scholar]
  9. Gavalchin J., Fan N., Lane M. J., Papsidero L., Poiesz B. J. 1993; Identification of a putative cellular receptor for HTLV-I by a monoclonal antibody, Mab 34-23. Virology 194:1–9
    [Google Scholar]
  10. Gavalchin J., Fan N., Waterbury P. G., Corbett E., Faldasz B. D., Peshick S. M., Poiesz B. J., Papsidero L., Lane M. J. 1995; Regional localization of the putative cell surface receptor for HTLV-I to human chromosome 17q32.2–17q25.3. Virology 212:196–203
    [Google Scholar]
  11. Gray G. S., White M., Bartman T., Mann D. 1990; Envelope gene sequence of HTLV-1 isolate MT-2 and its comparison with other HTLV-1 isolates. Virology 177:391–395
    [Google Scholar]
  12. Hibbs M. L., Jakes S., Stacker S. A., Wallace R. W., Springer T. A. 1990; The cytoplasmic domain of the integrin lymphocyte function-associated antigen 1 beta subunit: sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylation site. Journal of Experimental Medicine 174:1227–1238
    [Google Scholar]
  13. Hildreth J. E. K., Subramanium A., Hampton R. A. 1997; Human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation mediated by vascular cell adhesion molecule-1: evidence for involvement of cell adhesion molecules in HTLV-1 biology. Journal of Virology 71:1173–1180
    [Google Scholar]
  14. Huber S. A. 1994; VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. Journal of Virology 68:3453–3458
    [Google Scholar]
  15. Ida H., Eguchi K., Mizokami A., Yamashita I., Origuchi T., Takashima H., Shimada H., Kawabe Y., Nakamura T., Nagataki S. 1995; CD18 and CD50(ICAM-3) mAb block human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation. In Leukocyte Typing. V. White Cell Differentiation Antigens pp 1598–1599 Edited by Schlossman S. F., Boumsell L., Gilks W. Oxford: Oxford University Press;
    [Google Scholar]
  16. King S. L., Cunningham J. A., Finberg R. W., Bergelson J. M. 1995; Echovirus 1 interaction with the isolated VLA-2 I domain. Journal of Virology 69:3237–3239
    [Google Scholar]
  17. Lub M., van Vliet S. J., Oomen S. P., Pieters R. A., Robinson M., Figdor C. G., van Kooyk Y. 1997; Cytopl asmic tails of beta 1, beta 2, and beta 7 integrins differentially regulate LFA-1 function in K562 cells. Molecular Biology of the Cell 8:719–728
    [Google Scholar]
  18. Nagy K., Clapham P., Cheingsong-Popov R., Weiss R. A. 1983; Human T-cell leukemia virus type I: induction of syncytia and inhibition by patients’ sera. International Journal of Cancer 32:321–328
    [Google Scholar]
  19. Niewiesk S., Daenke S., Parker C. E., Taylor G., Weber J., Nightingale S., Bangham C. R. M. 1995; Naturally occurring variants of human T-cell leukemia virus type I Tax protein impair its recognition by cytotoxic T lymphocytes and the transactivation function of Tax. Journal of Virology 69:2649–2653
    [Google Scholar]
  20. Paine E., Garcia J., Philpott T. C., Shaw G., Ratner L. 1991; Limited sequence variation in human T-lymphotropic virus type 1 isolates from North American and African patients. Virology 182:111–123
    [Google Scholar]
  21. Pique C., Pham D., Tursz T., Dokhelar M.-C. 1993; Thecytoplasmic domain of the human T-cell leukemia virus type I envelope can modulate envelope functions in a cell type-dependent manner. Journal ofVirology 67:557–561
    [Google Scholar]
  22. Siess D. C., Kozak S. L., Kabat D. 1996; Exceptional fusogenicity of Chinese hamster ovary cells with murine retroviruses suggests roles for cellular factor(s) and receptor clusters in the membrane fusion process. Journal of Virology 70:3432–3439
    [Google Scholar]
  23. Sommerfelt M. A., Weiss R. A. 1990; Receptor interference groups of 20 retroviruses plating on human cells. Virology 176:58–69
    [Google Scholar]
  24. Staunton D. E., Merluzzi V. J., Rothlein R., Barton R., Marlin S. D., Springer T. A. 1989; A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-6-1429
Loading
/content/journal/jgv/10.1099/0022-1317-80-6-1429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error