1887

Abstract

EBNA-1 is the only viral protein consistently expressed in all cells latently infected by Epstein–Barr virus (EBV). There is a high frequency of sequence variation within functionally important domains of EBNA-1, with five subtypes identified. Individuals may be infected with multiple EBV strains (classified according to EBNA-1 subtype), but Burkitt’s lymphoma (BL) tumours carry a single subtype and exhibit some subtype preference. Subtype variation has also been related to geographical location. In the present study EBNA-1 polymorphisms were examined in a series of haematological malignancies from two distinct geographical regions, Brazil and the United Kingdom. Nucleotide sequence analysis of the carboxy-terminal region of EBNA-1 in 34 cases revealed six distinct sequences, some of which are novel. A new subtype, named V-Ala, was identified. EBNA-1 subtype in tumours differed markedly according to geographical location. In contrast to previous studies, we found evidence of EBNA-1 sequence variation within individual BL tumour samples.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-10-2741
1999-10-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/10/0802741a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-10-2741&mimeType=html&fmt=ahah

References

  1. Ambinder, R. F. , Mullen, M. , Chang, Y. N. , Hayward, G. S. & Hayward, S. D. ( 1991; ). Functional domains of Epstein–Barr virus nuclear antigen EBNA-1. Journal of Virology 65, 1466-1478 .
    [Google Scholar]
  2. Armstrong, A. A. , Weiss, L. M. , Gallagher, A. , Jones, D. B. , Krajewski, A. S. , Angus, B. , Brown, G. , Jack, A. S. , Wilkins, B. S. , Onions, D. E. & Jarrett, R. F. ( 1992; ). Criteria for the definition of Epstein–Barr virus association in Hodgkin’s disease. Leukemia 6, 869-874.
    [Google Scholar]
  3. Bhatia, K. , Raj, A. , Gutiérrez, M. I. , Judde, J. G. , Spangler, G. , Venkatesh, H. & Magrath, I. T. ( 1996; ). Variation in the sequence of Epstein Barr virus nuclear antigen 1 in normal peripheral blood lymphocytes and in Burkitt’s lymphomas. Oncogene 13, 177-181.
    [Google Scholar]
  4. Biesinger, B. , Muller-Fleckenstein, I. , Simmer, B. , Lang, G. , Wittmann, S. , Platzer, E. , Desrosiers, R. C. & Fleckenstein, B. ( 1992; ). Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proceedings of the National Academy of Sciences, USA 89, 3116-3119 .[CrossRef]
    [Google Scholar]
  5. Bochkarev, A. , Barwell, J. A. , Pfuetzner, R. A. , Bochkareva, E. , Frappier, L. & Edwards, A. M. ( 1996; ). Crystal structure of the DNA-binding domain of the Epstein–Barr virus origin-binding protein, EBNA1, bound to DNA. Cell 84, 791-800.[CrossRef]
    [Google Scholar]
  6. Chen, Y. Y. , Chang, K. L. , Chen, W. G. , Shibata, D. , Hayashi, K. & Weiss, L. M. ( 1998; ). Epstein–Barr virus-associated nuclear antigen-1 carboxy-terminal gene sequences in Japanese and American patients with gastric carcinoma. Laboratory Investigation 78, 877-882.
    [Google Scholar]
  7. Chen, M. R. , Tsai, C. H. , Wu, F. F. , Kan, S. H. , Yang, C. S. & Chen, J. Y. ( 1999; ). The major immunogenic epitopes of Epstein–Barr virus (EBV) nuclear antigen 1 are encoded by sequence domains which vary among nasopharyngeal carcinoma biopsies and EBV-associated cell lines. Journal of General Virology 80, 447-455.
    [Google Scholar]
  8. Epstein, M. A. , Achong, B. G. & Barr, Y. M. ( 1964; ). Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet i, 702-703.
    [Google Scholar]
  9. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences – a maximum likelihood approach. Journal of Molecular Evolution 17, 368-376.[CrossRef]
    [Google Scholar]
  10. Gutiérrez, M. I. , Raj, A. , Spangler, G. , Sharma, A. , Hussain, A. , Judde, J. G. , Tsao, S. W. , Yuen, P. W. , Joab, I. , Magrath, I. T. & Bhatia, K. ( 1997a; ). Sequence variations in EBNA-1 may dictate restriction of tissue distribution of Epstein–Barr virus in normal and tumour cells. Journal of General Virology 78, 1663-1670.
    [Google Scholar]
  11. Gutiérrez, M. I., Spangler, G., Magrath, I. T. & Bhatia, K. (1997b). The wild type sequence of EBNA-1 is incompatible with EBV associated lymphomas: evidence that tumor associated EBNA-1 mutations arise in vivo. [Meeting abstract.] Blood 90 (Suppl. 10), 1081.
  12. Gutiérrez, M. I. , Spangler, G. , Kingma, D. , Raffeld, M. , Guerrero, I. , Misad, O. , Jaffe, E. S. , Magrath, I. T. & Bhatia, K. ( 1998; ). Epstein–Barr virus in nasal lymphomas contains multiple ongoing mutations in the EBNA-1 gene. Blood 92, 600-606.
    [Google Scholar]
  13. Habeshaw, G. , Yao, Q. Y. , Bell, A. I. , Morton, D. & Rickinson, A. B. ( 1999; ). Epstein–Barr virus nuclear antigen 1 sequences in endemic and sporadic Burkitt’s lymphoma reflect virus strains prevalent in different geographic areas. Journal of Virology 73, 965-975.
    [Google Scholar]
  14. Hamilton-Dutoit, S. J. , Raphael, M. , Audouin, J. , Diebold, J. , Lisse, I. , Pedersen, C. , Oksenhendler, E. , Marelle, L. & Pallesen, G. ( 1993; ). In situ demonstration of Epstein–Barr virus small RNAs (EBER 1) in acquired immunodeficiency syndrome-related lymphomas: correlation with tumor morphology and primary site. Blood 82, 619-624.
    [Google Scholar]
  15. Kieff, E. ( 1996; ). Epstein–Barr virus and its replication. In Fields Virology, pp. 2343-2396. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  16. Li, S. N. , Chang, Y. S. & Liu, S. T. ( 1996; ). Effect of a 10-amino acid deletion on the oncogenic activity of latent membrane protein 1 of Epstein–Barr virus. Oncogene 12, 2129-2135 .
    [Google Scholar]
  17. Magrath, I. ( 1990; ). The pathogenesis of Burkitt’s lymphoma. Advances in Cancer Research 55, 133-270.
    [Google Scholar]
  18. Rowe, M. , Lear, A. L. , Croom-Carter, D. , Davies, A. H. & Rickinson, A. B. ( 1992; ). Three pathways of Epstein–Barr virus gene activation from EBNA1-positive latency in B lymphocytes. Journal of Virology 66, 122-131.
    [Google Scholar]
  19. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  20. Shimizu, H. & Burns, J. C. ( 1995; ). Extraction of nucleic acids: sample preparation from paraffin-embedded tissues. In PCR Strategies, pp. 32-38. Edited by M. A. Innis, D. H. Gelfand & J. J. Sninsky. London: Academic Press.
  21. Snudden, D. K. , Smith, P. R. , Lai, D. , Ng, M. H. & Griffin, B. E. ( 1995; ). Alterations in the structure of the EBV nuclear antigen, EBNA1, in epithelial cell tumours. Oncogene 10, 1545-1552 .
    [Google Scholar]
  22. Sugden, B. & Warren, N. ( 1989; ). A promoter of Epstein–Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. Journal of Virology 63, 2644-2649 .
    [Google Scholar]
  23. Trainor, C. D. , Wongstaal, F. & Reitz, M. S.Jr ( 1982; ). Comparative restriction endonuclease maps of proviral DNA of the primate type C simian sarcoma-associated virus and gibbon ape leukemia virus group. Journal of Virology 41, 298-308.
    [Google Scholar]
  24. Weiss, L. M. , Strickler, J. G. , Warnke, R. A. , Purtilo, D. T. & Sklar, J. ( 1987; ). Epstein–Barr viral DNA in tissues of Hodgkin’s disease. American Journal of Pathology 129, 86-91.
    [Google Scholar]
  25. Wrightham, M. N. , Stewart, J. P. , Janjua, N. J. , De V Pepper, S. , Sample, C. , Rooney, C. M. & Arrand, J. R. ( 1995; ). . Antigenic and sequence variation in the C-terminal unique domain of the Epstein–Barr virus nuclear antigen EBNA-1. Virology 208, 521-530.[CrossRef]
    [Google Scholar]
  26. Yates, J. L. ( 1996; ). Epstein–Barr virus DNA replication. In DNA Replication in Eukaryotic Cells, pp. 751-773. Edited by M. L. DePamphilis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Zong, J. C. , Metroka, C. , Reitz, M. S. , Nicholas, J. & Hayward, G. S. ( 1997; ). Strain variability among Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genomes: evidence that a large cohort of United States AIDS patients may have been infected by a single common isolate. Journal of Virology 71, 2505-2511 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-10-2741
Loading
/content/journal/jgv/10.1099/0022-1317-80-10-2741
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error