1887

Abstract

A recombinant baculovirus expressing glycoprotein H (gpUL75) of human cytomegalovirus was used to examine the humoral immune response in naturally infected individuals. Recombinant baculovirus infected insect cells produced two forms of gH with molecular masses of 78–82 kDa and 94 kDa. The 94 kDa polypeptide was modified by high mannose oligosaccharide side-chains as shown by reduction in molecular mass after treatment with endoglycosidases H and F. The 78–82 kDa protein represented the non-glycosylated precursor which was resistant to the enzymes. In contrast to gH expressed in mammalian cells, the recombinant baculovirus expressed gH was transported to the cell surface. Glycoprotein H produced in insect cells was reactive with human convalescent sera and all tested neutralizing monoclonal antibodies recognizing either linear or conformational epitopes. Antibodies reacting with insect cell derived gH were detected in 96% of HCMV seropositive human sera. Using insect cells infected with the gH expressing recombinant baculovirus as immunoabsorbent, between 0% and 58% of the total virus neutralizing activity was removed from sera of individuals with a past HCMV infection. gH must therefore be considered a major antigen for the induction of neutralizing antibodies during natural infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-7-1537
1996-07-01
2022-05-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/7/JV0770071537.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-7-1537&mimeType=html&fmt=ahah

References

  1. Adler S. P., Starr S. E., Plotkin S. A., Hempfling S. H., Buis J., Manning M. L., Best A. M. 1995; Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. Journal of Infectious Diseases 171:26–32
    [Google Scholar]
  2. Andreoni M., Faircloth M., Vugler L., Britt W. J. 1989; A rapid microneutralization assay for the measurement of neutralizing antibody reactive with human cytomegalovirus. Journal of Virological Methods 23:157–167
    [Google Scholar]
  3. Baboonian C., Blake K., Booth J. C., Wiblin C. N. 1989; Complement-independent neutralising monoclonal antibody with differential reactivity for strains of human cytomegalovirus. Journal of Medical Virology 29:139–145
    [Google Scholar]
  4. Beninga J., Kropff B., Mach M. 1995; Comparative analysis of fourteen individual human cytomegalovirus proteins for helper T cell response. Journal of General Virology 76:153–160
    [Google Scholar]
  5. Bogner E., Reschke M., Reis B., Reis E., Britt W., Radsak K. 1992; Recognition of compartmentalized intracellular analogs of glycoprotein H of human cytomegalovirus. Archives of Virology 126:67–80
    [Google Scholar]
  6. Britt W. J., Vugler L. G. 1992; Oligomerization of the human cytomegalovirus major envelope glycoprotein complex gB (gp55-116). Journal of Virology 66:6747–6754
    [Google Scholar]
  7. Britt W. J., Vugler L., Butfiloski E. J., Stephens E. B. 1990; Cell surface expression of human cytomegalovirus (HCMV) gp55-116 (gB): use of HCMV-recombinant vaccinia virus-infected cells in analysis of the human neutralizing antibody response. Journal of Virology 64:1079–1085
    [Google Scholar]
  8. Browne H., Baxter V., Minson T. 1993; Analysis of protective immune responses to the glycoprotein H–glycoprotein L complex of herpes simplex virus type 1. Journal of General Virology 74:2813–2817
    [Google Scholar]
  9. Chou S. 1992; Molecular epidemiology of envelope glycoprotein H of human cytomegalovirus. Journal of Infectious Diseases 166:604–607
    [Google Scholar]
  10. Chou S. W., Dennison K. M. 1991; Analysis of interstrain variation in cytomegalovirus glycoprotein B sequences encoding neutralization-related epitopes. Journal of Infectious Diseases 163:1229–1234
    [Google Scholar]
  11. Cranage M. P., Smith G. L., Bell S. E., Hart H., Brown C., Bankier A. T., Tomlinson P., Barrell B. G., Minson T. C. 1988; Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type I glycoprotein H. Journal of Virology 62:1416–1422
    [Google Scholar]
  12. Duus K. M., Hatfield C., Grose C. 1995; Cell surface expression and fusion by the varicella-zoster virus gH: gL glycoprotein complex: analysis by laser scanning confocal microscopy. Virology 210:429–440
    [Google Scholar]
  13. Ehrlich P. H., Moustafa Z. A., Justice J. C., Harfeldt K. E., Ostberg L. 1988; Further characterization of the fate of human monoclonal antibodies in rhesus monkeys. Hybridoma 7:385–395
    [Google Scholar]
  14. Foa-Tomasi L., Avitabile E., Boscaro A., Brandimarti R., Gualandri R., Manservigi R., Dall’Olio F., Serafini-Cessi F., Fiume G. C. 1991; Herpes simplex virus (HSV) glycoprotein H is partially processed in a cell line that expresses the glycoprotein and fully processed in cells infected with deletion or ts mutants in the known HSV glycoproteins. Virology 180:474–482
    [Google Scholar]
  15. Forghani B., Ni L., Grose C. 1994; Neutralization epitope of the varicella-zoster virus gH:gL glycoprotein complex. Virology 199:458–462
    [Google Scholar]
  16. Forrester A. J., Sullivan V., Simmons A., Blacklaws B. A., Smith G. L., Nash A. A., Minson A. C. 1991; Induction of protective immunity with antibody to herpes simplex virus type 1 glycoprotein H (gH) and analysis of the immune response to gH expressed in recombinant vaccinia virus. Journal of General Virology 72:369–375
    [Google Scholar]
  17. Fowler K. B., Stagno S., Pass R. F., Britt W. J., Boll T. J., Alford C. A. 1992; The outcome of congenital cytomegalovirus infection in relation to maternal antibody status [see comments]. New England Journal of Medicine 326:663–667
    [Google Scholar]
  18. Ghiasi H., Nesburn A. B., Wechsler S. L. 1991; Cell surface expression of herpes simplex virus type I glycoprotein H in recombinant baculovirus-infected cells. Virology 185:187–194
    [Google Scholar]
  19. Gompels U. A., Minson A. C. 1989; Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. Journal of Virology 63:4744–4755
    [Google Scholar]
  20. Goochee C. F., Gramer M. J., Andersen D. C., Bahr J. B., Rasmussen J. R. 1991; The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology N.Y. 9:1347–1355
    [Google Scholar]
  21. Gretch D. R., Kari B., Gehrz R. C., Stinski M. F. 1988; A multigene family encodes the human cytomegalovirus glycoprotein complex gcll (gp47-52 complex). Journal of Virology 62:1956–1962
    [Google Scholar]
  22. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Ho M. 1993 Cytomegalovirus. Biology and Infection New York: Plenum;
    [Google Scholar]
  24. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S., Goldsmith K., Minson A. C., Johnson D. C. 1992; A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. Journal of Virology 66:2240–2250
    [Google Scholar]
  25. Jonjic S., Pavic I., Polic B., Crnkovic I., Lucin P., Koszinowski U. H. 1994; Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. Journal of Experimental Medicine 179:1713–1717
    [Google Scholar]
  26. Kaye J. F., Gompels U. A., Minson A. C. 1992; Glycoprotein H of human cytomegalovirus (HCMV) forms a stable complex with the HCMV UL115 gene product. Journal of General Virology 73:2693–2698
    [Google Scholar]
  27. Klupp B. G., Baumeister J., Karger A., Visser N., Mettenleiter T. C. 1994; Identification and characterization of a novel structural glycoprotein in pseudorabies virus. gL. Journal of Virology 68:3868–3878
    [Google Scholar]
  28. Kohl S. 1992; The role of antibody in herpes simplex virus infection in humans. Current Topics in Microbiology and Immunology 179:75–88
    [Google Scholar]
  29. Kuroda K., Geyer H., Geyer R., Doerfler W., Klenk H. D. 1990; The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology 174:418–429
    [Google Scholar]
  30. Lehner R., Stamminger T., Mach M. 1991; Comparative sequence analysis of human cytomegalovirus strains. Journal of Clinical Microbiology 29:2494–2502
    [Google Scholar]
  31. Liu D. X., Compels U. A., Foa-Tomasi L., Campadelli-Fiume G. 1993; Human herpesvirus-6 glycoprotein H and L homologs are components of the gp100 complex and the gH external domain is the target for neutralizing monoclonal antibodies. Virology 197:12–22
    [Google Scholar]
  32. Luckow V. A., Summers M. D. 1988; Signals important for high-level expression of foreign genes in Autographa califomica nuclear polyhedrosis virus expression vectors. Virology 167:56–71
    [Google Scholar]
  33. Marshall G. S., Rabalais G. P., Stout G. G., Waldeyer S. L. 1992; Antibodies to recombinant-derived glycoprotein B after natural human cytomegalovirus infection correlate with neutralizing activity. Journal of Infectious Diseases 165:381–384
    [Google Scholar]
  34. Rapp M., Messerle M., Lucin P., Koszinowski U. H. 1993; In vivo protection studies with MCMV glycoproteins gB and gH expressed by vaccinia virus. In Multidisciplinary Approach to Understanding Cytomegalovirus Disease pp 327–332 Edited by Michelson S., Plotkin S. A. Amsterdam: Excerpta Medica;
    [Google Scholar]
  35. Rasmussen L. 1993; Progress in the development of a human cytomegalovirus glycoprotein subunit vaccine. In Multidisciplinary Approach to Understanding Cytomegalovirus Disease pp 311–320 Edited by Michelson S., Plotkin S. A. Amsterdam: Excerpta Medica;
    [Google Scholar]
  36. Rasmussen L. E., Nelson R. M., Kelsall D. C., Merigan T. C. 1984; Murine monoclonal antibody to a single protein neutralizes the infectivity of human cytomegalovirus. Proceedings of the National Academy of Sciences, USA 81:876–880
    [Google Scholar]
  37. Rasmussen L., Matkin C., Spaete R., Paehl C., Merigan T. C. 1991; Antibody response to human cytomegalovirus glycoproteins gB and gH after natural infection in humans. Journal of Infectious Diseases 164:835–842
    [Google Scholar]
  38. Reddehase M. J., Mutter W., Munch K., Buhring H. J., Koszinowski U.H. 1987; CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. Journal of Virology 61:3102–3108
    [Google Scholar]
  39. Reusser P., Riddell S. R., Meyers J. D., Greenberg P. D. 1991; Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78:1373–1380
    [Google Scholar]
  40. Riddell S. R., Greenberg P. D. 1994; Therapeutic reconstitution of human viral immunity by adoptive transfer of cytotoxic T lymphocyte clones. Current Topics in Microbiology and Immunology 189:9–34
    [Google Scholar]
  41. Roberts S. R., Ponce de-Leon M., Cohen G. H., Eisenberg R. J. 1991; Analysis of the intracellular maturation of the herpes simplex virus type I glycoprotein gH in infected and transfected cells. Virology 184:609–624
    [Google Scholar]
  42. Roy D. M., Grundy J. E., Emery V. C. 1993; Sequence variation within neutralizing epitopes of the envelope glycoprotein B of human cytomegalovirus: comparison of isolates from renal transplant recipients and AIDS patients. Journal of General Virology 74:2499–2505
    [Google Scholar]
  43. Simpson J. A., Chow J. C., Baker J., Avdalovic N., Yuan S., Au D., Co M. S., Vasquez M., Britt W. J., Coelingh K. L. 1993; Neutralizing monoclonal antibodies that distinguish three antigenic sites on human cytomegalovirus glycoprotein H have conformationally distinct binding sites. Journal of Virology 67:489–496
    [Google Scholar]
  44. Spaete R. R., Perot K., Scott P. I., Nelson J. A., Stinski M. F., Pachl C. 1993; Coexpression of truncated human cytomegalovirus gH with the UL115 gene product or the truncated human fibroblast growth factor receptor results in transport of gH to the cell surface. Virology 193:853–861
    [Google Scholar]
  45. Spaete R. R., Gehrz R. C., Landini M. P. 1994; Human cytomegalovirus structural proteins. Journal of General Virology 75:3287–3308
    [Google Scholar]
  46. Urban M., Britt W., Mach M. 1992; The dominant linear neutralizing antibody-binding site of glycoprotein gp86 of human cytomegalovirus is strain specific. Journal of Virology 66:1303–1311
    [Google Scholar]
  47. Urban M., Winkler T., Landini M. P., Britt W., Mach M. 1994; Epitope-specific distribution of IgG subclasses against antigenic domains on glycoproteins of human cytomegalovirus. Journal of Infectious Diseases 169:83–90
    [Google Scholar]
  48. Utz U., Britt W., Vugler L., Mach M. 1989; Identification of a neutralizing epitope on glycoprotein gp58 of human cytomegalovirus. Journal of Virology 63:1995–2001
    [Google Scholar]
  49. Wells D. E., Vugler L. G., Britt W. J. 1990; Structural and immunological characterization of human cytomegalovirus gp55-116 (gB) expressed in insect cells. Journal of General Virology 71:873–880
    [Google Scholar]
  50. Yaswen L. R., Stephens E. B., Davenport L. C., Hutt-Fletcher L. M. 1993; Epstein–Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology 195:387–396
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-7-1537
Loading
/content/journal/jgv/10.1099/0022-1317-77-7-1537
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error