1887

Abstract

The virion-induced host shutoff product of the herpes simplex virus UL41 gene is required for shutoff of host translation and degradation of cellular mRNAs. We employed a rabbit antipeptide antiserum to identify a 58K UL41-related phosphoprotein in infected cells. We also provide evidence that this protein is a component of the virus particle, consistent with its role in virion-induced shutoff.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-2-467
1992-02-01
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/2/JV0730020467.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-2-467&mimeType=html&fmt=ahah

References

  1. Bonner W. M., Laskey R. A. 1974; A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46:175–179
    [Google Scholar]
  2. Doolittle R. F. 1986 Of Urfs and Orfs: A Primer on How to Analyze Derived Amino Acid Sequences pp 89–90 Mill Valley: University Science Books;
    [Google Scholar]
  3. Fenwick M. L. 1984; The effects of herpesviruses on cellular macromolecular synthesis. In Comprehensive Virology vol 19 pp 359–390 Edited by Wagner R. R., Fraenkel-Conrat H. New York: Plenum Press;
    [Google Scholar]
  4. Fenwick M. L., Everett R. D. 1990; Inactivation of the shutoff gene (UL41) of herpes simplex virus types 1 and 2. Journal of General Virology 71:2961–2967
    [Google Scholar]
  5. Fenwick M. L., Walker M. J. 1978; Suppression of the synthesis of cellular macromolecules by herpes simplex virus. Journal of General Virology 41:37–51
    [Google Scholar]
  6. Frink R. J., Anderson K. P., Wagner E. W. 1981; Herpes simplex virus type 1 Hind III fragment L encodes spliced and complementary mRNA species. Journal of Virology 39:559–572
    [Google Scholar]
  7. Goldstein D. J., Weller S. K. 1988; An ICP6: :lacz insertional mutagen is used to demonstrate that the UL52 gene of herpes simplex virus type 1 is required for virus growth and DNA synthesis. Journal of Virology 62:2970–2977
    [Google Scholar]
  8. Hall J. D., Coen D. M., Fisher B. L., Weisslitz M., Randall S., Almy R. E., Gelep P. T., Schaffer P. A. 1984; Generation of genetic diversity in herpes simplex virus: an antimutator phenotype maps to the DNA polymerase locus. Virology 132:26–37
    [Google Scholar]
  9. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins: gE and gI. Journal of Virology 62:1347–1354
    [Google Scholar]
  10. Kwong A. D., Frenkel N. 1987; Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proceedings of the National Academy of Sciences, U.S.A. 84:1926–1930
    [Google Scholar]
  11. Kwong A. D., Kruper J. A., Frenkel N. 1988; Herpes simplex virus virion host shutoff function. Journal of Virology 62:912–921
    [Google Scholar]
  12. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  13. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  14. Nishioka Y., Silverstein S. 1977; Degradation of cellular mRNA during infection by herpes simplex virus. Proceedings of the National Academy of Sciences, U.S.A. 74:2370–2374
    [Google Scholar]
  15. Nishioka Y., Silverstein S. 1978; Requirement of protein synthesis for the degradation of host mRNA in Friend erythroleukemia cells infected with herpes simplex virus type 1. Journal of Virology 27:619–627
    [Google Scholar]
  16. Oroskar A. A., Read G. S. 1989; Control of mRNA stability by the virion host shutoff function of herpes simplex virus. Journal of Virology 63:1897–1906
    [Google Scholar]
  17. Read G. S., Frenkel N. 1983; Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of α (immediate-early) viral polypeptides. Journal of Virology 46:498–512
    [Google Scholar]
  18. Roizman B., Borman G. S., Kamali-Rousta M. 1965; Macromolecular synthesis in cells infected with herpes simplex virus. Nature, London 206:1374–1375
    [Google Scholar]
  19. Schek N., Bachenheimer S. L. 1985; Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells. Journal of Virology 55:601–610
    [Google Scholar]
  20. Smibert C. A., Smiley J. R. 1990; Differential regulation of endogenous and transduced β-globin genes during infection of erythroid cells with a herpes simplex virus type 1 recombinant. Journal of Virology 64:3882–3894
    [Google Scholar]
  21. Spear P. G., Roizman B. 1972; Proteins specified by herpes simplex virus: V. Purification and structural proteins of the herpesvirion. Journal of Virology 9:143–159
    [Google Scholar]
  22. Spessot R., Inchley K., Hupel T. M., Bacchetti S. 1989; Cloning of the herpes simplex virus ICP4 gene in an adenovirus vector: effects on adenovirus gene expression and replication. Virology 108:378–387
    [Google Scholar]
  23. Strom T., Frenkel N. 1987; Effects of herpes simplex virus on mRNA stability. Journal of Virology 61:2198–2207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-2-467
Loading
/content/journal/jgv/10.1099/0022-1317-73-2-467
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error