1887

Abstract

The herpes simplex virus type 1 genome contains four open reading frames (ORFs) which are predicted to encode hydrophobic proteins with the potential to cross a membrane several times. The products of these genes (genes UL10, UL20, UL43 and UL53) have not previously been identified. To investigate the role of these proteins in the virus life cycle, we attempted to inactivate the genes individually by inserting the gene from within the ORFs. Using this approach we have isolated insertion mutants for UL10 and UL43, as well as a deletion mutant lacking the majority of the UL43 ORF. The growth of the UL10- virus was slightly impaired in tissue culture compared to that of the wild-type virus parent, whereas the growth of the UL43 mutants was indistinguishable from that of wild-type virus. Furthermore, deletion of the majority of the UL43 ORF did not impair the ability of the virus to replicate at the periphery, or to spread to and replicate within the nervous system, in a mouse ear model. Repeated attempts to isolate insertion mutants for UL20 and UL53 were unsuccessful, suggesting that these genes may be essential for virus growth, at least in tissue culture. Using antipeptide sera, the products of genes UL10 and UL20 have been detected.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-4-897
1991-04-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/4/JV0720040897.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-4-897&mimeType=html&fmt=ahah

References

  1. Atherton E., Gait M. J., Sheppard R. C., Williams B. J. 1979; The polyamide method of solid phase peptide and oligonucleotide synthesis. Bioorganic Chemistry 8:351–370
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  3. Bassiri R. M., Dvorak J., Utiger R. D. 1979; Thyrotropin releasing hormone. In Methods of Hormone Radioimmunoassay pp 46–47 Edited by Juffe B. H., Behrman H. R. New York: Academic Press;
    [Google Scholar]
  4. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complemetation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  5. Chakrabarti S., Brechling K., Moss B. 1985; Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Molecular and Cellular Biology 5:3403–3409
    [Google Scholar]
  6. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A. III, Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD 169. Current Topics in Microbiology and Immunology 154:129–173
    [Google Scholar]
  7. Costa R. H., Devi B. G., Anderson K. P., Gaylord B. H., Wagner E. K. 1981; Characterization of a major late herpes simplex virus type 1 mRNA. Journal of Virology 38:483–496
    [Google Scholar]
  8. Costa R. H., Cohen G., Eisenberg R., Long D., Wagner E. 1984; Direct demonstration that the abundant 6-kilobase herpes simplex virus type 1 mRNA mapping between 0-23 and 0.27 map units encodes the major capsid protein VP5. Journal of Virology 49:287–292
    [Google Scholar]
  9. Costa R. H., Draper K. G., Devi-Rao G., Thompson R. L., Wagner E. K. 1985; Virus-induced modification of the host cell is required for expression of the bacterial chloramphenicol acetyltransferase gene controlled by a late herpes simplex virus promoter (VP5). Journal of Virology 56:19–30
    [Google Scholar]
  10. Davison A. J., Scott J. E. 1986a; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  11. Davison A. J., Scott J. E. 1986b; DNA sequence of the major capsid protein gene of herpes simplex virus type 1. Journal of General Virology 67:2279–2286
    [Google Scholar]
  12. Davison A. J., Wilkie Z. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  13. Debroy C., Pederson N., Person S. 1985; Nucleotide sequence of a herpes simplex virus type 1 gene that causes cell fusion. Virology 145:36–48
    [Google Scholar]
  14. Eisenberg D., Schwarz E., Komaromy M., Wall R. 1984; Analysis of membrane and surface protein sequences with the hydrophobic moment plot. Journal of Molecular Biology 179:125–142
    [Google Scholar]
  15. Goldstein D. J., Weller S. K. 1988; Herpes simplex virus type l-induced ribonucleotide reductase activity is dispensible for virus growth and DNA synthesis: isolation and characterization of an ICP6:: lacZ insertion mutant. Journal of Virology 62:196–205
    [Google Scholar]
  16. Graham F. L., van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  17. Hill T. J., Field H. J., Blyth W. A. 1975; Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. Journal of General Virology 28:341–353
    [Google Scholar]
  18. Hubbard S. C., Ivatt R. J. 1981; Synthesis and processing of asparagine-linked oligosaccharides. Annual Review of Biochemistry 50:555–583
    [Google Scholar]
  19. Jenkins F. J., Howett M. K. 1984; Characterization of mRNAs that map in the Bgl II N fragment of the herpes simplex virus type 2 genome. Journal of Virology 52:99–107
    [Google Scholar]
  20. Karlin S., Blaisdell B. E., Mocarski E. S., Brendel V. 1989; A method to identify distinctive charge configurations in protein sequences, with application to human herpesvirus polypeptides. Journal of Molecular Biology 205:165–177
    [Google Scholar]
  21. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  22. Lehner R., Meyer H., Mach M. 1989; Identification and characterization of a human cytomegalovirus gene coding for a membrane protein that is conserved among human herpesviruses. Journal of Virology 63:3792–3800
    [Google Scholar]
  23. Lonsdale D. M. 1979; A rapid technique for distinguishing herpes simplex virus type 1 from type 2 by restriction enzyme technology. Lancet i:849–852
    [Google Scholar]
  24. McGeoch D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  25. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  26. McGeoch D. J., Dolan A., Donald S., Brauer D. H. K. 1986a; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  27. McGeoch D. J., Dolan A., Frame M. C. 1986b; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the exonuclease gene and neighbouring genes. Nucleic Acids Research 14:3435–3448
    [Google Scholar]
  28. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988a; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  29. McGeoch D. J., Dalrymple M. A., Dolan A., McNab D., Perry L. J., Taylor P., Challberg M. D. 1988b; Structure of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  30. MacLean A. R., Brown S. M. 1987; A herpes simplex virus type 1 variant which fails to synthesize immediate early polypeptide VmwIE63. Journal of General Virology 68:1339–1350
    [Google Scholar]
  31. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  32. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Marsden H. S., Stow N. D., Preston V. G., Timbury M. C., Wilkie N. M. 1978; Physical mapping of herpes simplex virus-induced polypeptides. Journal of Virology 28:624–642
    [Google Scholar]
  34. Panicali D., Grzelecki A., Huang C. 1986; Vaccinia virus vectors utilizing the /J-galactosidase assay for rapid selection of recombinant viruses and measurement of gene expression. Gene 47:193–199
    [Google Scholar]
  35. Perry L. J., McGeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  36. Rixon F. J., McLauchlan J. 1990; Insertion of DNA sequences at a unique restriction enzyme site engineered for vector purposes into the genome of herpes simplex virus type 1. Journal of General Virology 71:2931–2939
    [Google Scholar]
  37. Sheppard R. C. 1983; Continuous flow methods in organic synthesis. Chemistry in Britain 19:402–413
    [Google Scholar]
  38. Stow N. D., Wilkie N. M. 1976; An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA. Journal of General Virology 33:447–458
    [Google Scholar]
  39. Whitton J. L., Rixon F. J., Easton A. J., Clements J. B. 1983; Immediate-early mRNA-2 of herpes simplex viruses types 1 and 2 is unspliced: conserved sequences around the 5′ and 3′ termini correspond to transcription regulatory signals. Nucleic Acids Research 11:6271–6287
    [Google Scholar]
  40. Zweig M., Heilman C. J., Rabin H., Hampar B. 1980; Shared antigenic determinants between two distinct classes of proteins in cells infected with herpes simplex virus. Journal of Virology 35:644–652
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-4-897
Loading
/content/journal/jgv/10.1099/0022-1317-72-4-897
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error