1887

Abstract

We have identified two encoded proteins with an antiserum raised against a synthetic oligopeptide corresponding to amino acids 671 to 684 of the predicted protein product of gene UL47 of herpes simplex virus type 1 (HSV-1). They have apparent of 82000 and 81000 and are both major virion components located in the tegument. The 82/8IK proteins were first detected in infected cells in minor amounts 6 h after infection at 37 °C but were later (from 10 h until 24 h after infection) present in large amounts. UL47 regulation was investigated using phosphonoacetic acid (PAA), an inhibitor of DNA synthesis: the amounts of the 82/8IK protein synthesized were compared with those of 65K, an early gene product, and 21K/22K, a true late gene product. The data showed that UL47 is regulated as a true late gene.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-12-2953
1990-12-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/12/JV0710122953.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-12-2953&mimeType=html&fmt=ahah

References

  1. Atherton E., Gait M. J., Sheppard R. C., Williams B. J. 1979; The polyamide method of solid phase peptide and oligonucleotide synthesis. Bioorganic Chemistry 8:351–370
    [Google Scholar]
  2. Batterson W., Roizman B. 1983; Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. Journal of Virology 46:371–377
    [Google Scholar]
  3. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  4. Campbell M. E. M., Palfreyman J. W., Preston C. M. 1984; Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology 180:1–19
    [Google Scholar]
  5. Crumpacker C. S., Chartrand P., Subak-Sharpe J. H., Wilkie N. M. 1980; Resistance of herpes simplex virus to acyloguanosine- genetic and physical anaylsis. Virology 105:171–184
    [Google Scholar]
  6. Dalziel R. G., Marsden H. S. 1984; Identification of two herpes simplex virus type 1-induced proteins (21K and 22K) which interact specifically with the a sequence of herpes simplex virus DNA. Journal of General Virology 65:1467–1475
    [Google Scholar]
  7. Dargan D. J. 1986; The structure and assembly of herpesviruses. Electron Microscopy of Proteins 5:359–437
    [Google Scholar]
  8. Frame M. C., Marsden H. S., McGeoch D. J. 1986a; Novel herpes simplex virus type 1 glycoproteins identified by antiserum against a synthetic oligopeptide from the predicted product of gene US4. Journal of General Virology 67:745–751
    [Google Scholar]
  9. Frame M. C., McGeoch D. J., Rixon F. J., Orr A. C., Marsden H. S. 1986b; The 10K virion phosphoprotein encoded by gene US9 from herpes simplex virus type 1. Virology 150:321–332
    [Google Scholar]
  10. Frink R. J., Anderson K. P., Wagner E. K. 1981; Herpes simplex virus type 1 HindIII fragment L encodes spliced and complementary mRNA species. Journal of Virology 39:559–572
    [Google Scholar]
  11. Goodrich L. D., Rixon F. J., Parris D. S. 1989; Kinetics of expression of the gene encoding the 65-kilodalton DNA-binding protein of herpes simplex virus type 1. Journal of Virology 63:137–147
    [Google Scholar]
  12. Haarr L., Marsden H. S., Preston C. M., Smiley J. R., Summers W. C., Summers W. P. 1985; Utilisation of AUG codons for initiation of protein synthesis directed by the messenger RNA for herpes simplex virus-specified thymidine kinase. Journal of Virology 56:512–519
    [Google Scholar]
  13. Hall L. M., Draper K. G., Frink R. J., Costa R. H., Wagner E. K. 1982; Herpes simplex virus mRNA species mapping in EcoRI fragment I. Journal of Virology 43:594–607
    [Google Scholar]
  14. Hay J., Subak-Sharpe J. H. 1976; Mutants of herpes simplex virus types 1 and 2 that are resistant to phosphonoacetic acid induce altered DNA polymerase activities in infected cells. Journal of General Virology 31:145–148
    [Google Scholar]
  15. Heine J. W., Honess R. W., Cassai E., Roizman B. 1974; Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains. Journal of Virology 14:640–651
    [Google Scholar]
  16. Holland L. E., Anderson K. P., Shipman C. JR Wagner E. K. 1980; Viral DNA synthesis is required for the efficient expression of specific herpes simplex virus type 1 mRNA species. Virology 101:10–24
    [Google Scholar]
  17. Holland L. E., Sandri-Goldin R. M., Goldin A. L., Glorioso J. C., Levine M. 1984; Transcriptional and genetic analyses of the herpes simplex virus type 1 genome: coordinates 0·29 to 0·45. Journal of Virology 49:947–959
    [Google Scholar]
  18. Honess R. W., Roizman B. 1973; Proteins specified by herpes simplex virus. XI. Identification and relative molar rate of synthesis of structural and non-structural herpesvirus polypeptides in the infected cell. Journal of Virology 12:1347–1365
    [Google Scholar]
  19. Johnson P. A., MacLean C. A., Marsden H. S., Dalziel R. G., Everett R. D. 1986; The product of gene US11 of herpes simplex virus type 1 is expressed as a true late gene. Journal of General Virology 67:871–883
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  21. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  22. McKnight J. L. C., Pellet P. E., Jenkins F. J., Roizman B. 1987; Characterization and nucleotide sequence of two herpes simplex virus 1 genes whose products modulate α trans-inducing factor-dependent activation of α genes. Journal of Virology 61:992–1001
    [Google Scholar]
  23. MacLean C. A., Rixon F. J., Marsden H. S. 1987; The products of gene US11 of herpes simplex virus type 1 are DNA-binding and localize to the nucleoli of infected cells. Journal of General Virology 68:1921–1937
    [Google Scholar]
  24. Macpherson I., Stoker M. G. 1962; Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  25. Markwell M. A. K., Fox C. F. 1978; Surface-specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6- tetrachloro-3α, 6α-diphenylglycoluril. Biochemistry 17:4807–4817
    [Google Scholar]
  26. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. 1976; Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild type and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  27. Marsden H. S., Haarr L., Preston C. M. 1983; Processing of herpes simplex virus proteins and evidence that translation of thymidine kinase mRNA is initiated at three separate AUG codons. Journal of Virology 46:434–445
    [Google Scholar]
  28. Marsden H. S., Campbell M. E. M., Haarr L., Frame M. C., Parris D. S., Murphy M., Hope R. G., Muller M. T., Preston C. M. 1987; The 65,000-M r DNA-binding and virion trans-inducing proteins of herpes simplex virus type 1. Journal of Virology 61:2428–2437
    [Google Scholar]
  29. Moss H. 1989; Properties of the herpes simplex virus type 2 trans- inducing factor Vmw65 in wild-type and mutant viruses. Journal of General Virology 70:1579–1585
    [Google Scholar]
  30. Palfreyman J. W., Aitcheson T. C., Taylor P. 1984; Guidelines for the production of polypeptide specific antisera using small synthetic oligopeptides as immunogens. Journal of Immunological Methods 75:383–393
    [Google Scholar]
  31. Parris D. S., Cross A., Haarr L., Orr A., Frame M. C., Murphy M., McGeoch D. J., Marsden H. S. 1988; Identification of the gene encoding the 65-kilodalton DNA-binding protein of herpes simplex virus type 1. Journal of Virology 62:818–825
    [Google Scholar]
  32. Pertuiset B., Boccora M., Cerbrian J., Berthelot N., Chous-Terman S., Puvion-Dutilleul F., Sisman J., Sheldrick P. 1989; Physical mapping and nucleotide sequence of a herpes simplex virus type 1 gene required for capsid assembly. Journal of Virology 63:2169–2179
    [Google Scholar]
  33. Posnett D. N., McGrath H., Tam J. P. 1988; A novel method for producing anti-peptide antibodies. Journal of Biological Chemistry 263:1719–1725
    [Google Scholar]
  34. Post L. E., Mackem S., Roizman B. 1981; Regulation of alpha genes of herpes simplex virus; expression of chimeric genes produced by fusion of thymidine kinase with alpha gene promoters. Cell 24:555–565
    [Google Scholar]
  35. Preston C. M., Frame M. C., Campbell M. E. M. 1988; A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory DNA sequence. Cell 52:425–434
    [Google Scholar]
  36. Rixon F. J., McGeoch D. J. 1984; A 3′ co-terminal family of mRNAs from the herpes simplex virus type 1 short region: two overlapping reading frames encode unrelated polypeptides one of which has a highly reiterated amino acid sequence. Nucleic Acids Research 12:2473–2487
    [Google Scholar]
  37. Rixon F. J., Cross A. M., Addison C., Preston V. G. 1988; The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. Journal of General Virology 69:2879–2891
    [Google Scholar]
  38. Rixon F. J., Davison M. D., Davison A. J. 1990; Identification of the genes encoding two capsid proteins of herpes simplex virus type 1 by direct amino acid sequencing. Journal of General Virology 71:1211–1214
    [Google Scholar]
  39. Roizman B., Furlong D. 1974; The replication of herpesviruses. In Comprehensive Virology 3 pp. 229–403 Fraenkel-Conrat H., Wagner R. R. Edited by New York: Plenum Press;
    [Google Scholar]
  40. Schenk P., Ludwig H. 1988; The 65K DNA binding protein appears early in HSV-1 replication. Archives of Virology 102:119–123
    [Google Scholar]
  41. Schrag J. D., Venkataram Prasad B. V., Rixon F. J., Chiu W. 1989; Three-dimensional structure of the HSV-1 nucleocapsid. Cell 56:651–660
    [Google Scholar]
  42. Sheppard R. C. 1983; Continuous flow methods in organic synthesis. Chemistry in Britain 19:402–413
    [Google Scholar]
  43. Silver S., Roizman B. R. 1985; γ 2-Thymidine kinase chimeras are identically transcribed but regulated as γ2 genes in herpes simplex virus genomes and as β genes in cell genomes. Molecular and Cellular Biology 5:518–528
    [Google Scholar]
  44. Spear P. G., Roizman B. 1972; Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpes virion. Journal of Virology 9:143–159
    [Google Scholar]
  45. Tam J. P. 1988; Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proceedings of the National Academy of Sciences, U.S.A 85:5409–5413
    [Google Scholar]
  46. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, U.S.A 76:4350–4354
    [Google Scholar]
  47. Yei S., Chowdhury S. I., Bhat B. M., Conley A. J., Wold W. S. M., Batterson W. 1990; Identification and characterization of the herpes simplex virus type 2 gene encoding the essential capsid protein ICP32/VP19c. Journal of Virology 64:1124–1134
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-12-2953
Loading
/content/journal/jgv/10.1099/0022-1317-71-12-2953
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error