1887

Abstract

SUMMARY

A DNA complementary to the 3′-terminal 1168 nucleotides of the genome of the N strain of soybean mosaic virus (SMV) has been cloned and sequenced. cDNA sequence and coat protein analyses indicate that the SMV coat protein-coding region is at the 3′ end of the genome, and that the coat protein is processed from a larger protein. The coat protein-coding sequence is predicted to be 795 nucleotides in length, encoding a protein of 265 amino acids with a calculated of 29 857. The 3′ untranslated region is 259 nucleotides in length and is followed by a polyadenylate tract. The SMV coat protein-coding region, along with a small amount of upstream sequence, has been expressed in as a -galactosidase fusion protein. The size of the protein was less than predicted for the fusion protein, suggesting processing in . The coat protein-coding region has also been expressed in and transgenic tobacco callus as an unfused protein under the control of the cauliflower mosaic virus 35S promoter. The coat protein produced in transgenic tobacco callus had an electrophoretic mobility identical to that of SMV coat protein and constituted approximately 0·05% (w/w) of the total extracted protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-7-1853
1989-07-01
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/7/JV0700071853.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-7-1853&mimeType=html&fmt=ahah

References

  1. Allison R. F., Dougherty W. G., Parks T. D., Willis L., Johnston R. E., Kelly M., Armstrong F. B. 1985a; Biochemical analysis of the capsid protein gene and capsid protein of tobacco etch virus: N-terminal amino acids are located on the virion’s surface. Virology 147:309–316
    [Google Scholar]
  2. Allison R. F., Sorenson J. C., Kelly M. E., Armstrong F. B., Dougherty W. G. 1985b; Sequence determination of the capsid protein gene and flanking regions of tobacco etch virus: evidence for synthesis and processing of a polyprotein in potyvirus gene expression. Proceedings of the National Academy of SciencesU.S.A 82:3969–3972
    [Google Scholar]
  3. Allison R., Johnston R. E., Dougherty W. G. 1986; The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology 154:9–20
    [Google Scholar]
  4. Carrington J. C., Dougherty W. G. 1987a; Small nuclear inclusion protein encoded by a plant potyvirus is a protease. Journal of Virology 61:2540–2548
    [Google Scholar]
  5. Carrington J. C., Dougherty W. G. 1987b; Processing of the tobacco etch virus 49K protease requires autoproteolysis. Virology 160:355–362
    [Google Scholar]
  6. Cuozzo M., O’Connell K. M., Kaniewski W., Fang R.-X., Chua N. -H, Tumer N. E. 1988; Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6:549–557
    [Google Scholar]
  7. Dente L., Cesareni G., Cortese R. 1983; pEMBL: a new family of single stranded plasmids. Nucleic Acids Research 11:1645–1655
    [Google Scholar]
  8. Domier L. L., Franklin K. M., Shahabuddin M., Hellmann G. M., Overmeyer J. H., Hiremath S. T., Siaw M. F. E, Lomonossoff G. P., Shaw I. G., Rhoads R. E. 1986; The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Research 14:5417–5430
    [Google Scholar]
  9. Dougherty W. G. 1983; Analysis of viral RNA isolated from tobacco leaf tissue infected with tobacco etch virus. Virology 131:473–481
    [Google Scholar]
  10. Dougherty W. G., Carrington I. C. 1988; Expression and function of potyviral gene products. Annual Review of Phytopathology 26:123–143
    [Google Scholar]
  11. Dougherty W. G., Hiebert E. 1980; Translation of potyvirus RNA in a rabbit reticulocyte lysate: cell-free translation strategy and a genetic map of the potyviral genome. Virology 104:183–194
    [Google Scholar]
  12. Dougherty W. G., Allison R. F., Parks T. D., Johnston R. E., Feild M. J., Armstrong F. B. 1985; Nucleotide sequence at the 3′ terminus of pepper mottle virus genomic RNA: evidence for an alternative mode of potyvirus capsid protein gene organization. Virology 146:282–291
    [Google Scholar]
  13. Dougherty W. G., Carrington J. C, Cary S. M., Parks T. D. 1988; Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO Journal 7:1281–1287
    [Google Scholar]
  14. Fraley R. T., Rogers S. G., Horsch R. B., Eichholtz D. A., Flick J. S., Fink C L., Hoffman N. L., Sanders P. R. 1985; The SEV system: a new disarmed Ti plasmid vector for plant transformation. Bio/Technology 3:629–635
    [Google Scholar]
  15. Gough K. H., Azad A. A., Hanna P. J., Shukla D. D. 1987; Nucleotide sequence of the capsid and nuclear inclusion protein genes from the Johnson grass strain of sugarcane mosaic virus RNA. Journal of General Virology 68:297–304
    [Google Scholar]
  16. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  17. Hari V. 1981; The RNA of tobacco etch virus: further characterization and detection of protein linked to RNA. Virology 112:391–399
    [Google Scholar]
  18. Hari V., Siegel A., Rozek C., Timberlake W. E. 1979; The RNA of tobacco etch virus contains poly(A). Virology 92:568–571
    [Google Scholar]
  19. Harrison B. D., Robinson D. J. 1988; Molecular variation in vector-borne plant viruses: epidemiological significance. Philosophical Transactions of the Royal Society of London B321:447–462
    [Google Scholar]
  20. Hellmann G. M., Thornbury D. W., Hiebert E., Shaw J. G., Pirone T. P., Rhoads R. E. 1983; Cell free translation of tobacco vein mottling virus RNA. II. Immunoprecipitation of products by antisera to cylindrical inclusion, nuclear inclusion, and helper component proteins. Virology 124:434–444
    [Google Scholar]
  21. Hellmann G. M., Hiremath S. T., Shaw J. G., Rhoads R. E. 1986; Cistron mapping of tobacco vein mottling virus. Virology 151:159–171
    [Google Scholar]
  22. Hellmann G. M., Shaw J. G., Rhoads R. E. 1988; In vitro analysis of tobacco vein mottling virus NIa cistron: evidence for a virus-encoded protease. Virology 163:554–562
    [Google Scholar]
  23. Hemenway C., Fang R. -x., Kaniewski W. K., Chua N. -H., Tumer N. E. 1988; Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO Journal 7:1273–1280
    [Google Scholar]
  24. Hinchee M. A. W., Connor-Ward D. V., Newell C. A., Mcdonnell R. E., Sato S. J., Gasser C. S., Fischhoff D. A., Re D. B., Fraley R. T., Horsch R. B. 1988; Production of transgenic soybean plants using Agrobacterium- mediated DNA transfer. Bio/Technology 6:915–922
    [Google Scholar]
  25. Horsch R. B., Fry J. E., Hoffmann N. L., Eichholtz D., Rogers S. G., Fraley R. T. 1985; A simple and general method for transferring genes into plants. Science 227:1229–1231
    [Google Scholar]
  26. Kozak M. 1984; Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo . Nature, London 308:241–246
    [Google Scholar]
  27. Kramer B., Kramer W., Fritz H. -J. 1984; Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli . Cell 38:879–887
    [Google Scholar]
  28. Kunkel T. A., Roberts J. D., Zakour R. A. 1987; Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods in Enzymology 154:367–382
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  30. Lapeyre B., Amalric F. 1985; A powerful method for the preparation of cDNA libraries: isolation of cDNA encoding a 100-kDal nuclear protein. Gene 37:215–220
    [Google Scholar]
  31. Loesch-Fries L. S., Merlo D., Zinnen T., Burhop L., Hill K., Krahn K., Jarvis N., Nelson S., Halk E. 1987; Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. EMBO Journal 6:1845–1851
    [Google Scholar]
  32. Lutke H. A., Chow K. C, Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. 1987; Selection of AUG codons differs in plants and animals. EMBO Journal 6:43–48
    [Google Scholar]
  33. Matsudaira P. 1987; Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. Journal of Biological Chemistry 262:10035–10038
    [Google Scholar]
  34. Mccabe D. E., Swain W. F., Martinell B. I., Christou P. 1988; Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926
    [Google Scholar]
  35. Mcdonald J. G., Beveridge T. J., Bancroft J. B. 1976; Self-assembly of protein from a flexuous virus. Virology 69:327–331
    [Google Scholar]
  36. Powell Abel P., Nelson R. S., De B., Hoffmann N., Rogers S. G., Fraley R. T., Beachy R. N. 1986; Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743
    [Google Scholar]
  37. Rogers S. G., O’connell K., Horsch R. B., Fraley R. T. 1986; Investigation of factors involved in foreign protein expression in transformed plants. In Biotechnology in Plant Science: Relevance to Agriculture in the Nineteen Eighties219–226 Zaitlin M., Day P., Hollaender A. New York: Academic Press;
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of SciencesU.S.A. 74:5463–5467
    [Google Scholar]
  39. Schughart K., Von wilcken-Bergmann B., Esche H. 1987; Expression of adenovirus type 12 Elb 58-kDa protein in Escherichia coli and production of antibodies raised against a 58-kDa: β-galactosidase fusion protein. Gene 53:173–180
    [Google Scholar]
  40. Shahabuddin M., Shaw J. G., Rhoads R. E. 1988; Mapping of the tobacco vein mottling virus VPg cistron. Virology 163:635–637
    [Google Scholar]
  41. Shields S. A., Wilson T. M. A. 1987; Cell-free translation of turnip mosaic virus RNA. Journal of General Virology 68:169–180
    [Google Scholar]
  42. Shukla D. D., Inglis A. S., Mckern N. M., Gough K. H. 1986; Coat protein of potyviruses. 2. Amino acid sequence of the coat protein of potato virus Y. Virology 152:118–125
    [Google Scholar]
  43. Siaw M. F. E., Shahabuddin M., Ballard S., Shaw J. G., Rhoads R. E. 1985; Identification of a protein covalently linked to the 5' terminus of tobacco vein mottling virus RNA. Virology 142:134–143
    [Google Scholar]
  44. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of SciencesU.S.A. 76:4350–4354
    [Google Scholar]
  45. Tumer N. E., O’Connell K. M., Nelson R. S., Sanders P. R., Beachy R. N., Fraley R. T., Shah D. M. 1987; Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants. EMBO Journal 6:1181–1188
    [Google Scholar]
  46. Vance V. B., Beachy R. N. 1984a; Translation of soybean mosaic virus RNA in vitro: evidence of protein processing. Virology 132:271–281
    [Google Scholar]
  47. Vance V. B., Beachy R. N. 1984b; Detection of genomic length soybean mosaic virus RNA on polyribosomes of infected soybean leaves. Virology 138:26–36
    [Google Scholar]
  48. Van Dun C. M. P., Bol J. F., van Vloten-Doting L. 1987; Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants. Virology 159:299–305
    [Google Scholar]
  49. Van Dun C. M. P., Overduin B., Van Vloten-Doting L., Bol J. F. 1988; Transgenic tobacco expressing tobacco streak virus or mutated alfalfa mosaic virus coat protein does not cross-protect against alfalfa mosaic virus infection. Virology 164:383–389
    [Google Scholar]
  50. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA. Methods in Enzymology 153:3–11
    [Google Scholar]
  51. Yeh S.-D., Gonsalves D. 1985; Translation of papaya ringspot virus RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virology 143:260–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-7-1853
Loading
/content/journal/jgv/10.1099/0022-1317-70-7-1853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error