1887

Abstract

Summary

Inkoo virus (a bunyavirus) was grown in BHK-21 cells and labelled with [S]methionine or [H]mannose. [S]Methionine labelled the two envelope glycoproteins G1 ( = 125000) and G2 ( = 35000), as well as the nucleocapsid protein N ( = 25000). Only G1 and G2 were labelled with the sugar precursor. The [H]mannose-labelled virus was solubilized with detergent and digested with Pronase. The structure of the labelled glycopeptides originating from the mixture of G1 and G2 was studied by degrading the glycans stepwise with specific exo- and endoglycosidases, and by analysing the products by both gel and paper chromatography, as well as lectin-affinity chromatography. Three classes of -glycosidic glycans were found: complex glycans with the monosaccharide sequence (NeuNAcαGalβGlcNacβ) (Man) (GlcNAc) (occurrence of fucose was not studied), high mannose-type chains with the average structure (Man) (GlcNAc), and endoglycosidase H-resistant small glycans which were partly susceptible to mannosidase. These latter types of oligosaccharide chains are a novel finding among virus glycoproteins. The relative ratio of the three types of oligosaccharide chains was roughly 4.6:1:1 respectively. The G1 glycoprotein carried most of the sugar chains, since it contained 85% of the [H]mannose label. The results are discussed in relation to the site of virus maturation at smooth-surfaced vesicles in the Golgi region.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-63-2-425
1982-12-01
2022-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/63/2/JV0630020425.html?itemId=/content/journal/jgv/10.1099/0022-1317-63-2-425&mimeType=html&fmt=ahah

References

  1. Baenziger J. U., Fiete D. 1979a; Structural determinants of concanavalin A specificity for oligosaccharides. Journal of Biological Chemistry 254:2400–2407
    [Google Scholar]
  2. Baenziger J. U., Fiete D. 1979b; Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. Journal of Biological Chemistry 254:9795–9799
    [Google Scholar]
  3. Bergmann J. E., Tokuyasu K. T., Singer S. J. 1981; Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America 78:1746–1750
    [Google Scholar]
  4. Bishop D. H. L., Shope R. E. 1979; Bunyaviridae. In Comprehensive Virology vol. 14 pp. 1–156 Edited by Fraenkel-Conrat H., Wagner R. R. New York & London: Plenum Press;
    [Google Scholar]
  5. Bishop D. H. L., Calisher C. H., Casals J., Chumakov M. P., Gaidamovich S. Y., Hannoun C., Lvov D. K., Marshall I. D., Oker-Blom N., Pettersson R. F., Porterfield J. S., Russel P. K., Shope R. E., Westaway E. G. 1980; Bunyaviridae. Intervirology 14:125–143
    [Google Scholar]
  6. Bonner W. M., Laskey R. A. 1974; A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46:83–88
    [Google Scholar]
  7. Bretz R., Bretz H., Palade G. E. 1980; Distribution of terminal glycosyltransferases in hepatic Golgi fractions. Journal of Cell Biology 84:87–101
    [Google Scholar]
  8. Brummer-Korvenkontio M., Saikku P., Korhonen P., Ulmanen I., Reunala T., Karvonen J. 1973; Arboviruses in Finland. IV. Isolation and characterization of Inkoo virus, a Finnish representative of the California group. American Journal of Tropical Medicine and Hygiene 22:404–413
    [Google Scholar]
  9. Burke D., Keengstra K. 1979; Carbohydrate structure of Sindbis virus glycoprotein E2 from virus grown in hamster and chicken cells. Journal of Virology 29:546–554
    [Google Scholar]
  10. Carlson D. M. 1968; Structures and immunochemical properties of oligosaccharides isolated from pig submaxil- lary mucins. Journal of Biological Chemistry 243:616–626
    [Google Scholar]
  11. Etchinson J. R., Robertson J. S., Summers D. F. 1977; Partial structural analysis of the oligosaccharide moieties of the vesicular stomatitis virus glycoprotein by sequential chemical and enzymatic degradation. Virology 78:375–392
    [Google Scholar]
  12. Green J., Griffiths G., Louvard D., Quinn P., Warren G. 1981; Passage of viral membrane proteins through the Golgi complex. Journal of Molecular Biology 152:663–698
    [Google Scholar]
  13. Harpaz N., Schachter H. 1980; Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: α-D-mannoside β-2-A'-acetylglucosaminyltransferase I. Journal of Biological Chemistry 255:4894–4902
    [Google Scholar]
  14. Holmes K. V., Behnke J. N. 1981; Evolution of a coronavirus during persistent infection in vitro. In The Biochemistry and Biology of Coronaviruses Edited by Ter Meulen V., Siddell S., Wege H. New York & London: Plenum Press;
    [Google Scholar]
  15. Hubbard S. C., Robbins P. W. 1979; Synthesis and processing of protein-linked oligosaccharides in vivo. Journal of Biological Chemistry 254:4568–4576
    [Google Scholar]
  16. Kaariainen L., Hashimoto K., Saraste J., Virtanen I., Pennttinen K. 1980; Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins. Journal of Cell Biology 87:783–791
    [Google Scholar]
  17. Kornfeld R., Kornfeld S. 1980; Structure of glycoproteins and their oligosaccharide units. In Biochemistry of Glycoproteins and Proteoglycans pp. 1–34 Edited by Lennarz W. J. New York & London: Plenum Press;
    [Google Scholar]
  18. Kornfeld S., Li E., Tabas J. 1978; The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein. Journal of Biological Chemistry 253:7771–7778
    [Google Scholar]
  19. Krusius T., Finne J., Rauvala H. 1976; The structural basis of the different affinities of two types of acidic N- glycosidic glycopeptides for concanavalin A/Sepharose. FEBS Letters 71:117–120
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assemply of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  21. Li E., Kornfeld S. 1979; Structural studies of the major high mannose oligosaccharide units from Chinese hamster ovary cell glycoproteins. Journal of Biological Chemistry 254:1600–1605
    [Google Scholar]
  22. Li E., Tabas I., Kornfeld S. 1978; The synthesis of complex-type oligosaccharides. I. Structure of the lipid- linked oligosaccharide precursor of the complex type oligosaccharides of the vesicular stomatitis virus G protein. Journal of Biological Chemistry 253:7762–7770
    [Google Scholar]
  23. Lyons M. J., Heyduk J. 1973; Aspects of the developmental morphology of California encephalitis virus in cultured vertebrate and arthropod cells and in mouse brain. Virology 54:37–52
    [Google Scholar]
  24. Madoff D. H., Lenard J. 1982; A membrane glycoprotein that accumulates intracellularly: cellular processing of the large glycoprotein of La Crosse virus. Cell 28:821–829
    [Google Scholar]
  25. Mattila K., Renkonen O. 1978; Separation of A- and B-type glycopeptides of Semliki Forest virus by concanavalin A affinity chromatography and preliminary characterization of the B-type glycopeptides. Virology 91:508–510
    [Google Scholar]
  26. Munro J. R., Narasimhan S., Wetmore S., Riordan J. E., Schachter H. 1975; Intracellular localization of GDP-L-fucose: glycoprotein and CMP-sialic acid: apolipoprotein glycosyltransferase in rat and pork livers. Archives of Biochemistry and Biophysics 169:269–277
    [Google Scholar]
  27. Murphy F. A., Harrison A. K., Whitfield S. G. 1973; Bunyaviridae: morphologic and morphogenetic similarities of Bunyamwera serologic supergroup viruses and several other arthropod-borne viruses. Intervirology 1:297–316
    [Google Scholar]
  28. Olsnes S., Saltvedt E., Pihl A. 1974; Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis . Journal of Biological Chemistry 249:803–810
    [Google Scholar]
  29. Pesonen M. 1979; Sequence analysis of lactosamine type glycans of individual membrane proteins of Semliki Forest virus. Journal of General Virology 45:479–487
    [Google Scholar]
  30. Pesonen M., Kaariainen L. 1982; Incomplete complex oligosaccharides in Semliki Forest virus envelope proteins arrested within the cell in the presence of monensin. Journal of Molecular Biology 158:213–230
    [Google Scholar]
  31. Pesonen M., Renkonen O. 1976; Serum glycoprotein-type sequence of monosaccharides in membrane glycoproteins of Semliki Forest virus. Biochimica et biophysica acta 455:510–525
    [Google Scholar]
  32. Pesonen M., Haahtela K., Renkonen O. 1979; Core tetrasaccharide liberated by endo-β-D-.N-acetyl- glucosaminidase D from lactosamine-type oligosaccharides of Semliki Forest virus membrane proteins. Biochimica et biophysica acta 588:102–112
    [Google Scholar]
  33. pesonen M., Kuismanen E., Pettersson R. F. 1982; Monosaccharide sequence of protein-bound glycans of Uukuniemi virus. Journal of Virology 41:390–400
    [Google Scholar]
  34. Pettersson R. F., Kaariainen L. 1973; The ribonucleic acids of Uukuniemi virus, a non-cubical tick-borne arbovirus. Virology 56:608–619
    [Google Scholar]
  35. Rasilo M., -L. & Renkonen O. 1979; The molecular size of glycans liberated by hydrolysis from Semliki Forest virus proteins. Biochimica et biophysica acta 582:307–321
    [Google Scholar]
  36. Reading C. L., Penhoet E. E., Ballou C. E. 1978; Carbohydrate structure of vesicular stomatitis virus glycoprotein. Journal of Biological Chemistry 253:5600–5612
    [Google Scholar]
  37. Saikku P., Von Bonsdorff C.-H., Brummer-Korvenkontio M., Vaheri A. 1971; Isolation of non-cubical ribonucleoprotein from Inkoo virus, a Bunyamwera supergroup arbovirus. Journal of General Virology 13:335–337
    [Google Scholar]
  38. Struck D. K., Lennarz W. J. 1981; The function of saccharide-lipids in synthesis of glycoproteins. In Biochemistry of Glycoproteins and Proteoglycans pp. 35–83 Edited by Lennarz W. J. New York & London: Plenum Press;
    [Google Scholar]
  39. Tabas I, Kornfeld S. 1978; The synthesis of complex-type oligosaccharides. III. Identification of an a-D- mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. Journal of Biological Chemistry 253:7779–7786
    [Google Scholar]
  40. Tai T., Yamashita K., Ogata-Arakawa M., Koide N., Maramatsu T., Iwashita S., Inou Y., Kobata A. 1975; Structural studies of two ovalbumin glycopeptides in relation to the endo-β-N'-acetylglucosaminidase specificity. Journal of Biological Chemistry 250:8569–8575
    [Google Scholar]
  41. Tai T., Yamashita K., Kobata A. 1977; The substrate specificities of endo-β-N-acetylglucosaminidases CH and H. Biochemical and Biophysical Research Communications 78:434–441
    [Google Scholar]
  42. Tarentino A., Plummer T. H. Jr, Maley F. 1974; The release of intact oligosaccharides from specific glycoproteins by endo-β-N'-acetylglucosaminidase H. Journal of Biological Chemistry 249:818–824
    [Google Scholar]
  43. Tartakoff A., Hoessli D., Vasalli P. 1981; Intracellular transport oflymphoid surface glycoproteins. Role of the Golgi complex. Journal of Molecular Biology 150:525–535
    [Google Scholar]
  44. Von Bonsdorff C.-H., Saikku P., Oker-Blom N. 1969; The inner structure of Uukuniemi and two Bunyamwera supergroup arboviruses. Virology 39:342–344
    [Google Scholar]
  45. Vorndam A. V., Trent D. W. 1979; Oligosaccharides of the California encephalitis viruses. Virology 95:1–7
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-63-2-425
Loading
/content/journal/jgv/10.1099/0022-1317-63-2-425
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error