1887

Abstract

Recently, become one of the most prominent members of the genus . Since its occurrence, several outbreaks have been reported worldwide. These outbreaks were associated with isolates displaying decreased susceptibility towards fluconazole, the first-line agent for prophylaxis. Fluconazole is the most frequently used antifungal drug to treat bloodstream Candida infections.

The physiological effects of acquired antifungal resistance was investigated in this species using fluconazole, posaconazole and voriconazole resistant mutant strains generated by the in vitro microevolution method. Alterations in antifungal susceptibility and cross resistance were determined by the microdilution method, utilizing azoles (fluconazole, voriconazole, posaconazole), echinocandins (caspofungin, micafungin, anidulafungin) and a polyene (amphotericin B). Changes in the abiotic stress tolerance was examined by spotting assay, using osmotic stressors, cell wall perturbants and a membrane detergent. To evaluate the impact of the acquired resistance on sterol biosynthesis, ergosterol composition of all generated mutant strains were examined. A potential relationship between virulence and acquired antifungal resistance was also studied both in vitro and in vivo. Phagocytosis of the generated strains by J774.2 mouse macrophage-like cells was measured and analyzed by flow cytometry. In the murine infection model fungal burden of the triazole evolved strains was determined in spleen, kidney, liver and brain and compared to the fungal burden associated with the initial azole susceptible strain. Significant differences in virulence of the initial and the generated strains was observed suggesting a potential connection between the virulence and antifungal susceptibility of the emerging fungal pathogen, .

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.cc2021.po0177
2021-12-17
2022-01-27
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.cc2021.po0177
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error