@article{mbs:/content/journal/acmi/10.1099/acmi.cc2021.po0177, author = "Bohner, Flora and Papp, Csaba and Varga, Mónika and Szekeres, András and Tóth, Renáta and Gacser, Attila", title = "The effect of acquired triazole resistance on abiotic stress tolerance and virulence in Candida auris micro evolved strains", journal= "Access Microbiology", year = "2021", volume = "3", number = "12", pages = "", doi = "https://doi.org/10.1099/acmi.cc2021.po0177", url = "https://www.microbiologyresearch.org/content/journal/acmi/10.1099/acmi.cc2021.po0177", publisher = "Microbiology Society", issn = "2516-8290", type = "Journal Article", eid = "po0177", abstract = "Recently, C. auris become one of the most prominent members of the genus Candida. Since its occurrence, several C. auris outbreaks have been reported worldwide. These outbreaks were associated with isolates displaying decreased susceptibility towards fluconazole, the first-line agent for prophylaxis. Fluconazole is the most frequently used antifungal drug to treat bloodstream Candida infections. The physiological effects of acquired antifungal resistance was investigated in this species using fluconazole, posaconazole and voriconazole resistant mutant strains generated by the in vitro microevolution method. Alterations in antifungal susceptibility and cross resistance were determined by the microdilution method, utilizing azoles (fluconazole, voriconazole, posaconazole), echinocandins (caspofungin, micafungin, anidulafungin) and a polyene (amphotericin B). Changes in the abiotic stress tolerance was examined by spotting assay, using osmotic stressors, cell wall perturbants and a membrane detergent. To evaluate the impact of the acquired resistance on sterol biosynthesis, ergosterol composition of all generated mutant strains were examined. A potential relationship between virulence and acquired antifungal resistance was also studied both in vitro and in vivo. Phagocytosis of the generated strains by J774.2 mouse macrophage-like cells was measured and analyzed by flow cytometry. In the murine infection model fungal burden of the triazole evolved strains was determined in spleen, kidney, liver and brain and compared to the fungal burden associated with the initial azole susceptible strain. Significant differences in virulence of the initial and the generated strains was observed suggesting a potential connection between the virulence and antifungal susceptibility of the emerging fungal pathogen, C. auris.", }