1887

Abstract

Here we report draft-quality genome sequences for pathotype strains of eight plant-pathogenic bacterial pathovars: pv. , pv. , pv. , pv. , pv. , pv. , pv. and pv. (= pv. ). We also sequenced the type strain of species and the unclassified strain NCPPB 1067. These data will be useful for phylogenomic and taxonomic studies, filling some important gaps in sequence coverage of phylogenetic diversity. We include representatives of previously under-sequenced pathovars and species-level clades. Furthermore, these genome sequences may be useful in elucidating the molecular basis for important phenotypes, such as biosynthesis of coronatine-related toxins and degradation of fungal toxin cercosporin.

Funding
This study was supported by the:
  • Wellcome Trust (Award 218247/Z/19/Z)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BB/T010924/1)
    • Principle Award Recipient: MurrayGrant
  • Biotechnology and Biological Sciences Research Council (Award BB/T010908/1)
    • Principle Award Recipient: JoanaG. Vicente
  • Biotechnology and Biological Sciences Research Council (Award BB/T010916/1)
    • Principle Award Recipient: DavidJ. Studholme
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000532.v3
2023-07-14
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/acmi/5/7/acmi000532.v3.html?itemId=/content/journal/acmi/10.1099/acmi.0.000532.v3&mimeType=html&fmt=ahah

References

  1. Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F et al. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat Rev Microbiol 2020; 18:415–427 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Young JM, Dye DW, Bradbury JF, Panagopoulos CG, Robbs CF. A proposed nomenclature and classification for plant pathogenic bacteria. New Zeal J Agric Res 1978; 21:153–177 [View Article]
    [Google Scholar]
  4. Mafakheri H, Taghavi SM, Zarei S, Portier P, Dimkić I et al. Xanthomonas bonasiae sp. nov. and Xanthomonas youngii sp. nov., isolated from crown gall tissues. Int J Syst Evol Microbiol 2022; 72:005418 [View Article] [PubMed]
    [Google Scholar]
  5. Rana R, Madhavan VN, Saroha T, Bansal K, Kaur A et al. Xanthomonas indica sp. nov., a novel member of non-pathogenic Xanthomonas community from healthy rice seeds. Curr Microbiol 2022; 79:304 [View Article] [PubMed]
    [Google Scholar]
  6. Dia NC, Van Vaerenbergh J, Van Malderghem C, Blom J, Smits THM et al. Xanthomonas hydrangeae sp. nov., a novel plant pathogen isolated from Hydrangea arborescens. Int J Syst Evol Microbiol 2021; 71:005163
    [Google Scholar]
  7. Bansal K, Kaur A, Midha S, Kumar S, Korpole S et al. Xanthomonas sontii sp. nov., a non-pathogenic bacterium isolated from healthy basmati rice (Oryza sativa) seeds from India. Antonie van Leeuwenhoek 2021; 114:1935–1947 [View Article] [PubMed]
    [Google Scholar]
  8. Vicente JG, Rothwell S, Holub EB, Studholme DJ. Pathogenic, phenotypic and molecular characterisation of Xanthomonas nasturtii sp. nov. and Xanthomonas floridensis sp. nov., new species of Xanthomonas associated with watercress production in Florida. Int J Syst Evol Microbiol 2017; 67:3645–3654 [View Article]
    [Google Scholar]
  9. Morinière L, Burlet A, Rosenthal ER, Nesme X, Portier P et al. Clarifying the taxonomy of the causal agent of bacterial leaf spot of lettuce through a polyphasic approach reveals that Xanthomonas cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of Xanthomonas hortorum Vauterin e. Syst Appl Microbiol 2020; 43:126087 [View Article]
    [Google Scholar]
  10. Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW. Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol 2004; 27:755–762 [View Article] [PubMed]
    [Google Scholar]
  11. Hu FP, Young JM, Stead DE, Got M, Goto M. Transfer of Pseudomonas Cissicola (Takimoto 1939) Burkholder 1948 to the genus Xanthomonas. Int J Syst Bacteriol 1997; 47:228–230 [View Article]
    [Google Scholar]
  12. Young JM, Wilkie JP, Park DC, Watson DRW. New Zealand strains of plant pathogenic bacteria classified by multi-locus sequence analysis; proposal of Xanthomonas dyei sp. nov. Plant Pathol 2010; 59:270–281 [View Article]
    [Google Scholar]
  13. Schaad NW, Postnikova E, Lacy GH, Sechler A, Agarkova I et al. Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye340 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov.,341 X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. Syst Appl Microbiol 2005; 28:494–518 [View Article]
    [Google Scholar]
  14. da Gama MAS, Mariano R de LR, da Silva Júnior WJ, de Farias ARG, Barbosa MAG et al. Taxonomic repositioning of Xanthomonas campestris pv. viticola (Nayudu 1972) Dye 1978 as Xanthomonas citri pv. viticola (Nayudu 1972) Dye 1978 comb. nov. and emendation of the description of Xanthomonas citri pv. anacardii to include pigmented isolates pathogenic to cashew plant. Phytopathology 2018; 108:1143–1153 [View Article] [PubMed]
    [Google Scholar]
  15. Lang JM, DuCharme E, Ibarra Caballero J, Luna E, Hartman T et al. Detection and characterization of Xanthomonas vasicola pv. vasculorum (Cobb 1894) comb. nov. causing bacterial leaf streak of corn in the United States. Phytopathology 2017; 107:1312–1321 [View Article] [PubMed]
    [Google Scholar]
  16. Vauterin L, Hoste B, Kersters K, Swings J. Reclassification of Xanthomonas. Int J Syst Bacteriol 1995; 45:472–489 [View Article]
    [Google Scholar]
  17. Bull CT, De Boer SH, Denny TP, Firrao G, Saux M-L et al. Comprehensive list of names of plant pathogenic bacteria, 1980-2007. J Plant Pathol 2010; 92:551–592
    [Google Scholar]
  18. Bansal K, Kumar S, Patil PB. Phylo-taxonogenomics supports revision of taxonomic status of twenty Xanthomonas pathovars to Xanthomonas citri. Phytopathology 2021 [View Article] [PubMed]
    [Google Scholar]
  19. Studholme DJ, Wicker E, Abrare SM, Aspin A, Bogdanove A et al. Transfer of Xanthomonas campestris pv. arecae and X. campestris pv. musacearum to X. vasicola (Vauterin) as X. vasicola pv. arecae comb. nov. and X. vasicola pv. musacearum comb. nov. and description of X. vasicola pv. vasculorum pv. nov. Phytopathology 2020; 110:1153–1160 [View Article] [PubMed]
    [Google Scholar]
  20. Parkinson N, Cowie C, Heeney J, Stead D. Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. Int J Syst Evol Microbiol 2009; 59:264–274 [View Article] [PubMed]
    [Google Scholar]
  21. Dia NC, Morinière L, Cottyn B, Bernal E, Jacobs JM et al. Xanthomonas hortorum - beyond gardens: current taxonomy, genomics, and virulence repertoires. Mol Plant Pathol 2022; 23:597–621 [View Article] [PubMed]
    [Google Scholar]
  22. Takimoto S. Bacterial black spot of burdock. J Plant Prot Tokyo 1927; 14:519–523
    [Google Scholar]
  23. Dye DW, Bradbury JF, Goto M, Hayward AC, Lelliott RA et al. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev Plant Pathol 1980; 59:153–168
    [Google Scholar]
  24. Flynn P, Vidaver AK. Xanthomonas campestris pv. asclepiadis, pv. nov., causative agent of bacterial blight of Milkweed (Asclepias spp.). Plant Dis 1995; 79:1176 [View Article]
    [Google Scholar]
  25. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  27. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  28. Shakya M, Ahmed SA, Davenport KW, Flynn MC, Lo C-C et al. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci Rep 2020; 10:1723 [View Article] [PubMed]
    [Google Scholar]
  29. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  30. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  33. Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD et al. GenBank. Nucleic Acids Res 2019; 47:D94–D99 [View Article] [PubMed]
    [Google Scholar]
  34. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2022; 50:D20–D26 [View Article] [PubMed]
    [Google Scholar]
  35. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  36. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  37. Aritua V, Musoni A, Kabeja A, Butare L, Mukamuhirwa F et al. The draft genome sequence of Xanthomonas species strain Nyagatare, isolated from diseased bean in Rwanda. FEMS Microbiol Lett 2015; 362:1–4 [View Article] [PubMed]
    [Google Scholar]
  38. Jacobs JM, Pesce C, Lefeuvre P, Koebnik R. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. Front Plant Sci 2015; 6:431 [View Article] [PubMed]
    [Google Scholar]
  39. Watanabe T. Sen-i Sakumotsu Byo Gaku Tokyo: Asakura Publishing; 1947
    [Google Scholar]
  40. Okabe N, Goto M. Bacterial plant diseases in Japan: I. a list of bacterial diseases and their pathogens. Rep Fac Agric Shizuoka Univ 1955; 5:63–71
    [Google Scholar]
  41. Netsu O, Kijima T, Takikawa Y. Bacterial leaf spot of hemp caused by Xanthomonas campestris pv. cannabis in Japan. J Gen Plant Pathol 2014; 80:164–168 [View Article]
    [Google Scholar]
  42. Hopkins JC, Dowson WJ. A bacterial leaf and flower disease of Zinnia in Southern Rhodesia. Trans Br Mycol Soc 1949; 32:252–IN5 [View Article]
    [Google Scholar]
  43. Myung I-S, Lee JY, Yoo HL, Wu JM, Shim H-S. Bacterial leaf spot of Zinnia caused by Xanthomonas campestris pv. zinniae, a new disease in Korea. Plant Dis 2012; 96:1064 [View Article] [PubMed]
    [Google Scholar]
  44. Zhao YT, Lu BH, Bai QR, Gao J. First report of Xanthomonas campestris pv. zinniae causing bacterial leaf and flower spot disease of zinnia elegans in Jilin province, China. Plant Dis 2016; 100:208 [View Article]
    [Google Scholar]
  45. Schwarczinger I, Vajna L, Süle S. First report of bacterial leaf and flower spot of Zinnia elegans caused by Xanthomonas campestris pv. zinniae in Hungary. Plant Pathol 2008; 57:367 [View Article]
    [Google Scholar]
  46. Daub ME, Ehrenshaft M. The photoactivated cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu Rev Phytopathol 2000; 38:461–490 [View Article] [PubMed]
    [Google Scholar]
  47. Mitchell TK, Alejos-Gonzalez F, Gracz HS, Danehower DA, Daub ME et al. Xanosporic acid, an intermediate in bacterial degradation of the fungal phototoxin cercosporin. Phytochemistry 2003; 62:723–732 [View Article] [PubMed]
    [Google Scholar]
  48. Mitchell TK, Chilton WS, Daub ME. Biodegradation of the polyketide toxin cercosporin. Appl Environ Microbiol 2002; 68:4173–4181 [View Article] [PubMed]
    [Google Scholar]
  49. Taylor TV, Mitchell TK, Daub ME. An oxidoreductase is involved in cercosporin degradation by the bacterium Xanthomonas campestris pv. zinniae. Appl Environ Microbiol 2006; 72:6070–6078 [View Article] [PubMed]
    [Google Scholar]
  50. Truman R. Die-back of eucalyptus citriodora caused by Xanthomonas eucalypti sp.n. Phytopathology 1974; 64:143 [View Article]
    [Google Scholar]
  51. Ramnarine SDBJ, Jayaraman J, Ramsubhag A. Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles. PeerJ 2022; 9:e12632 [View Article] [PubMed]
    [Google Scholar]
  52. Merda D, Briand M, Bosis E, Rousseau C, Portier P et al. Ancestral acquisitions, gene flow and multiple evolutionary Trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol Ecol 2017; 26:5939–5952
    [Google Scholar]
  53. Bansal K, Kumar S, Kaur A, Singh A, Patil PB. Deep phylo-taxono genomics reveals Xylella as a variant lineage of plant associated Xanthomonas and supports their taxonomic reunification along with Stenotrophomonas and Pseudoxanthomonas. Genomics 2021; 113:3989–4003 [View Article] [PubMed]
    [Google Scholar]
  54. Chand R, Singh BD, Singh D, Singh PN. Xanthomonas campestris pv. parthenii pathovar nov. incitant of leaf blight of parthenium. Antonie van Leeuwenhoek 1995; 68:161–164 [View Article] [PubMed]
    [Google Scholar]
  55. Takimoto S. The bacterial disease of New Zealand flax. J Plant Prot Tokyo 1933; 20:774–778
    [Google Scholar]
  56. Peduzzi C, Sagia A, Burokiene D, Nagy IK, Fischer-Le Saux M et al. Complete genome sequencing of three clade-1 xanthomonads reveals genetic determinants for a lateral flagellin and the biosynthesis of coronatine-like molecules in Xanthomonas. Phytopathology 2023 [View Article] [PubMed]
    [Google Scholar]
  57. Tamura K, Takikawa Y, Tsuyumu S, Goto M, Watanabe M. Coronatine production by Xanthomonas campestris pv. phormiicola. Jpn J Phytopathol 1992; 58:276–281 [View Article]
    [Google Scholar]
  58. Martins L, Fernandes C, Blom J, Dia NC, Pothier JF et al. Xanthomonas euroxanthea sp. nov., a new xanthomonad species including pathogenic and non-pathogenic strains of walnut. Int J Syst Evol Microbiol 2020; 70:6024–6031 [View Article] [PubMed]
    [Google Scholar]
  59. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  60. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014; 2:e00927-14 [View Article] [PubMed]
    [Google Scholar]
  61. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  62. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  63. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  64. Palmer M, Venter SN, Coetzee MPA, Steenkamp ET. Prokaryotic species are sui generis evolutionary units. Syst Appl Microbiol 2019; 42:145–158 [View Article] [PubMed]
    [Google Scholar]
  65. Easwaramurthy R, Kaviyarasan V, Gnanamanickam SS. A bacterial disease of ornamental Cannas caused by Xanthomonas campestris pv cannae pv nov. Curr Sci 1984; 53:708–709
    [Google Scholar]
  66. Dehgan-Niri M, Rahimian H. First report of Xanthomonas gardneri causing bacterial leaf spot on Burdock in Iran. J Plant Pathol 2016; 98:677
    [Google Scholar]
  67. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  68. Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J. Comparative genomic and phenotypic characterization of pathogenic and non-pathogenic strains of Xanthomonas arboricola reveals insights into the infection process of bacterial spot disease of stone fruits. PLoS One 2016; 11:e0161977 [View Article] [PubMed]
    [Google Scholar]
  69. Hersemann L, Wibberg D, Blom J, Widmer F, Kölliker R. Draft genome sequence of the Xanthomonas bromi type strain LMG 947. Genome Announc 2016; 4:5–6 [View Article] [PubMed]
    [Google Scholar]
  70. da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002; 417:459–463 [View Article] [PubMed]
    [Google Scholar]
  71. Bolot S, Munoz Bodnar A, Cunnac S, Ortiz E, Szurek B et al. Draft genome sequence of the Xanthomonas cassavae type strain CFBP 4642. Genome Announc 2013; 1:e00679-13 [View Article] [PubMed]
    [Google Scholar]
  72. Gordon JL, Lefeuvre P, Escalon A, Barbe V, Cruveiller S et al. Comparative genomics of 43 strains of Xanthomonas citri pv. citri reveals the evolutionary events giving rise to pathotypes with different host ranges. BMC Genomics 2015; 16:1098 [View Article] [PubMed]
    [Google Scholar]
  73. Wang M, Roux F, Bartoli C, Huard-Chauveau C, Meyer C et al. Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. Proc Natl Acad Sci U S A 2018; 115:E5440–E5449 [View Article] [PubMed]
    [Google Scholar]
  74. Teixeira M, Martins L, Fernandes C, Chaves C, Pinto J et al. Complete genome sequences of walnut-associated Xanthomonas euroxanthea strains CPBF 367 and CPBF 426 obtained by Illumina/Nanopore hybrid assembly. Microbiol Resour Announc 2020; 9:e00902-20 [View Article] [PubMed]
    [Google Scholar]
  75. Fernandes C, Blom J, Pothier JF, Tavares F. High-quality draft genome sequence of Xanthomonas sp. strain CPBF 424, a walnut-pathogenic strain with atypical features. Microbiol Resour Announc 2018; 7:e00921-18 [View Article] [PubMed]
    [Google Scholar]
  76. Fernandes C, Martins L, Teixeira M, Blom J, Pothier JF et al. Comparative genomics of Xanthomonas euroxanthea and Xanthomonas arboricola pv juglandis strains Isolated from a single walnut host tree. Microorganisms 2021; 9: [View Article]
    [Google Scholar]
  77. Gétaz M, Krijger M, Rezzonico F, Smits THM, van der Wolf JM et al. Genome-based population structure analysis of the strawberry plant pathogen Xanthomonas fragariae reveals two distinct groups that evolved independently before its species description. Microb Genom 2018; 4:1–14 [View Article] [PubMed]
    [Google Scholar]
  78. Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB et al. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 2011; 12:146 [View Article] [PubMed]
    [Google Scholar]
  79. Timilsina S, Kara S, Jacques MA, Potnis N, Minsavage GV et al. Reclassification of Xanthomonas gardneri (ex Šutič 1957) Jones et al. 2006 as a later heterotypic synonym of Xanthomonas cynarae trébaol et al. Int J Syst Evol Microbiol 2019; 69:343–349 [View Article]
    [Google Scholar]
  80. Michalopoulou VA, Vicente JG, Studholme DJ, Sarris PF. Draft genome sequences of pathotype strains for three pathovars belonging to three Xanthomonas species. Microbiol Resour Announc 2018; 7:e00923-18 [View Article] [PubMed]
    [Google Scholar]
  81. Cohen SP, Luna EK, Lang JM, Ziegle J, Chang C et al. High-quality genome resource of Xanthomonas hyacinthi generated via long-read sequencing. Plant Dis 2020; 104:1011–1012 [View Article] [PubMed]
    [Google Scholar]
  82. Triplett LR, Verdier V, Campillo T, Van Malderghem C, Cleenwerck I et al. Characterization of a novel clade of Xanthomonas isolated from rice leaves in mali and proposal of Xanthomonas maliensis sp. nov. Antonie van Leeuwenhoek 2015; 107:869–881 [View Article] [PubMed]
    [Google Scholar]
  83. Ndongo S, Beye M, Dubourg G, Nguyen TTT, Couderc C et al. Genome analysis and description of Xanthomonas massiliensis sp. nov., a new species isolated from human faeces.. New Microbes New Infect 2018; 26:63–72 [View Article]
    [Google Scholar]
  84. Mücke S, Reschke M, Erkes A, Schwietzer C-A, Becker S et al. Transcriptional reprogramming of rice cells by Xanthomonas oryzae TALEs. Front Plant Sci 2019; 10:162 [View Article] [PubMed]
    [Google Scholar]
  85. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2015; 107:467–485 [View Article] [PubMed]
    [Google Scholar]
  86. López MM, Lopez-Soriano P, Garita-Cambronero J, Beltrán C, Taghouti G et al. Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var. nectarina) trees. Int J Syst Evol Microbiol 2018; 68:1857–1866 [View Article] [PubMed]
    [Google Scholar]
  87. Hansen LBS, Ren D, Burmølle M, Sørensen SJ. Distinct gene expression profile of Xanthomonas retroflexus engaged in synergistic multispecies biofilm formation. ISME J 2017; 11:300–303 [View Article] [PubMed]
    [Google Scholar]
  88. Gilroy R, Ravi A, Getino M, Pursley I, Horton DL et al. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021; 9:e10941 [View Article] [PubMed]
    [Google Scholar]
  89. Koebnik R, Burokiene D, Bragard C, Chang C, Saux M-L et al. The complete genome sequence of Xanthomonas theicola, the causal agent of canker on tea plants, reveals novel secretion systems in clade-1 Xanthomonads. Phytopathology 2021; 111:611–616 [View Article] [PubMed]
    [Google Scholar]
  90. Jaenicke S, Bunk B, Wibberg D, Spröer C, Hersemann L et al. Complete genome sequence of the barley pathogen Xanthomonas translucens Pv. translucens DSM 579 18974T (ATCC 19319T). Genome Announc 2016; 4:1–2 [View Article]
    [Google Scholar]
  91. Richard D, Boyer C, Vernière C, Canteros BI, Lefeuvre P et al. Complete genome sequences of six copper-resistant Xanthomonas strains causing bacterial spot of Solaneous plants, belonging to X. Gardneri, X. Euvesicatoria, and X. Vesicatoria, using long-read technology. Genome Announc 2017; 5:e00010-17 [View Article]
    [Google Scholar]
  92. Aritua V, Harrison J, Sapp M, Buruchara R, Smith J et al. Genome sequencing reveals a new lineage associated with lablab bean and genetic exchange between Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans. Front Microbiol 2015; 6:1080 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000532.v3
Loading
/content/journal/acmi/10.1099/acmi.0.000532.v3
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error