1887

Abstract

Coral reefs are declining due to anthropogenic disturbances, including climate change. Therefore, improving our understanding of coral ecosystems is vital, and the influence of bacteria on coral health has attracted particular interest. However, a gnotobiotic coral model that could enhance studies of coral–bacteria interactions is absent. To address this gap, we tested the ability of treatment with seven antibiotics for 3 weeks to deplete bacteria in , a sea anemone widely used as a coral model. Digital droplet PCR (ddPCR) targeting anemone and bacterial 16S rRNA genes was used to quantify bacterial load, which was found to decrease six-fold. However, metabarcoding of bacterial 16S rRNA genes showed that alpha and beta diversity of the anemone-associated bacterial communities increased significantly. Therefore, gnotobiotic with simplified, uniform bacterial communities were not generated, with biofilm formation in the culture vessels most likely impeding efforts to eliminate bacteria. Despite this outcome, our work will inform future efforts to create a much needed gnotobiotic coral model.

Funding
This study was supported by the:
  • Australian Research Council Laureate Fellowship (Award FL180100036)
    • Principle Award Recipient: MadeleineJosephine Henriette van Oppen
  • Australian Research Council (Award DP160101468)
    • Principle Award Recipient: LindaL. Blackall
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000314
2022-01-24
2022-07-01
Loading full text...

Full text loading...

/deliver/fulltext/acmi/4/1/acmi000314.html?itemId=/content/journal/acmi/10.1099/acmi.0.000314&mimeType=html&fmt=ahah

References

  1. ICZN Opinion 2404 (Case 3633) – Dysactis pallida Agassiz in Verrill, 1864 (currently Aiptasia pallida; Cnidaria, Anthozoa, Hexacorallia, Actiniaria): precedence over Aiptasia diaphana (Rapp, 1829), Aiptasia tagetes (Duchassaing de Fombressin & Michelotti, 1864), Aiptasia mimosa (Duchassaing de Fombressin & Michelotti, 1864) and Aiptasia inula (Duchassaing de Fombressin & Michelotti, 1864) not approved. Bull Zool Nomencl 2017; 74:130 [View Article]
    [Google Scholar]
  2. Grajales A, Rodríguez E. Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actiniaria, Metridioidea). Zootaxa 2014; 3826:55–100 [View Article] [PubMed]
    [Google Scholar]
  3. Voolstra CR. A journey into the wild of the cnidarian model system Aiptasia and its symbionts. Mol Ecol 2013; 22:4366–4368 [View Article] [PubMed]
    [Google Scholar]
  4. Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringle JR. Cell biology in model systems as the key to understanding corals. Trends Ecol Evol 2008; 23:369–376 [View Article] [PubMed]
    [Google Scholar]
  5. Gates RD, Baghdasarian G, Muscatine L. Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 1992; 182:324–332 [View Article] [PubMed]
    [Google Scholar]
  6. Goulet TL, Cook CB, Goulet D. Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host-symbiont combinations in the Aiptasia pallida/Symbiodinium symbiosis . Limnol Oceanogr 2005; 50:1490–1498 [View Article]
    [Google Scholar]
  7. Núñez-Pons L, Bertocci I, Baghdasarian G. Symbiont dynamics during thermal acclimation using cnidarian-dinoflagellate model holobionts. Mar Environ Res 2017; 130:303–314 [View Article] [PubMed]
    [Google Scholar]
  8. Perez SF, Cook CB, Brooks WR. The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida . J Exp Mar Biol Ecol 2001; 256:1–14 [View Article] [PubMed]
    [Google Scholar]
  9. Tolleter D, Seneca FO, DeNofrio JC, Krediet CJ, Palumbi SR et al. Coral bleaching independent of photosynthetic activity. Curr Biol 2013; 23:1782–1786 [View Article] [PubMed]
    [Google Scholar]
  10. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene . Science 2018; 359:80–83 [View Article] [PubMed]
    [Google Scholar]
  11. Oakley CA, Ameismeier MF, Peng L, Weis VM, Grossman AR et al. Symbiosis induces widespread changes in the proteome of the model cnidarian Aiptasia . Cell Microbiol 2016; 18:1009–1023 [View Article] [PubMed]
    [Google Scholar]
  12. Lehnert EM, Mouchka ME, Burriesci MS, Gallo ND, Schwarz JA et al. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 2014; 4:277–295 [View Article] [PubMed]
    [Google Scholar]
  13. Medrano E, Merselis DG, Bellantuono AJ, Rodriguez-Lanetty M. Proteomic basis of symbiosis: a heterologous partner fails to duplicate homologous colonization in a novel cnidarian- symbiodiniaceae mutualism. Front Microbiol 2019; 10:1153 [View Article] [PubMed]
    [Google Scholar]
  14. Matthews JL, Crowder CM, Oakley CA, Lutz A, Roessner U et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc Natl Acad Sci U S A 2017; 114:13194–13199 [View Article] [PubMed]
    [Google Scholar]
  15. Burriesci MS, Raab TK, Pringle JR. Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol 2012; 215:3467–3477 [View Article] [PubMed]
    [Google Scholar]
  16. Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR. Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleachingContributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching. PLoS One 2016; 11:e0152693 [View Article] [PubMed]
    [Google Scholar]
  17. Margulis L. Symbiogenesis and symbionticism. In Margulis L, Fester R. eds Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis Cambridge: MIT Press; 1991 pp 1–14
    [Google Scholar]
  18. Raina J-B, Tapiolas D, Willis BL, Bourne DG. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 2009; 75:3492–3501 [View Article] [PubMed]
    [Google Scholar]
  19. Thomas S, Burdett H, Temperton B, Wick R, Snelling D et al. Evidence for phosphonate usage in the coral holobiont. ISME J 2010; 4:459–461 [View Article] [PubMed]
    [Google Scholar]
  20. Ceh J, Kilburn MR, Cliff JB, Raina J-B, van Keulen M et al. Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol Evol 2013; 3:2393–2400 [View Article]
    [Google Scholar]
  21. Lesser M, Falcón L, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 2007; 346:143–152 [View Article]
    [Google Scholar]
  22. Brown T, Rodriguez-Lanetty M. Defending against pathogens - immunological priming and its molecular basis in a sea anemone, cnidarian. Sci Rep 2015; 5:17425 [View Article] [PubMed]
    [Google Scholar]
  23. Krediet CJ, Ritchie KB, Paul VJ, Teplitski M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Biol Sci 2013; 280:20122328 [View Article] [PubMed]
    [Google Scholar]
  24. Mao-Jones J, Ritchie KB, Jones LE, Ellner SP. How microbial community composition regulates coral disease development. PLoS Biol 2010; 8:e1000345 [View Article] [PubMed]
    [Google Scholar]
  25. Rohwer F, Kelley S. Culture-independent analyses of coral-associated microbes. In Rosenberg E, Loya Y. eds Coral Health and Disease Berlin: Springer; 2004 pp 265–277
    [Google Scholar]
  26. Xiang T, Hambleton EA, DeNofrio JC, Pringle JR, Grossman AR. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity(1). J Phycol 2013; 49:447–458 [View Article] [PubMed]
    [Google Scholar]
  27. Wang JT, Douglas AE. Essential amino acid synthesis and nitrogen recycling in an alga-invertebrate symbiosis. Mar Biol 1999; 135:219–222 [View Article]
    [Google Scholar]
  28. Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol 2021; 19:225–240 [View Article] [PubMed]
    [Google Scholar]
  29. Gonzalez-Perez G, Hicks AL, Tekieli TM, Radens CM, Williams BL et al. Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. J Immunol 2016; 196:3768–3779 [View Article] [PubMed]
    [Google Scholar]
  30. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011; 108:3047–3052 [View Article] [PubMed]
    [Google Scholar]
  31. Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 2014; 12:168–180 [View Article] [PubMed]
    [Google Scholar]
  32. Basic M, Bleich A. Gnotobiotics: Past, present and future. Lab Anim 2019; 53:232–243 [View Article] [PubMed]
    [Google Scholar]
  33. Costa RM, Cárdenas A, Voolstra C. Protocol for bacterial depletion of Aiptasia anemones - towards the generation of gnotobiotic/germ-free cnidarian host animals. protocols.io; 2019 https://dx.doi.org/10.17504/protocols.io.7mrhk56
  34. Costa RM, Cárdenas A, Loussert-Fonta C, Toullec G, Meibom A et al. Surface Topography, bacterial carrying capacity, and the prospect of microbiome manipulation in the sea anemone coral model Aiptasia . Front Microbiol 2021; 12:492 [View Article] [PubMed]
    [Google Scholar]
  35. Dungan AM, Hartman LM, Tortorelli G, Belderok R, Lamb AM et al. Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research. Symbiosis 2020; 80:195–206 [View Article]
    [Google Scholar]
  36. Wilson K, Li Y, Whan V, Lehnert S, Byrne K et al. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture 2002; 204:297–309 [View Article]
    [Google Scholar]
  37. Hartman LM, van Oppen MJH, Blackall LL. The effect of thermal stress on the bacterial microbiome of Exaiptasia diaphana . Microorganisms 2019; 8:20 [View Article] [PubMed]
    [Google Scholar]
  38. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14:e1002533 [View Article] [PubMed]
    [Google Scholar]
  39. Deb R, Nair A, Agashe D. Host dietary specialization and neutral assembly shape gut bacterial communities of wild dragonflies. PeerJ 2019; 7:e8058 [View Article] [PubMed]
    [Google Scholar]
  40. Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Diversity and transmission of gut bacteria in Atta and Acromyrmex leaf-cutting ants during development. Front Microbiol 2017; 8:1942 [View Article] [PubMed]
    [Google Scholar]
  41. Catterson JH, Khericha M, Dyson MC, Vincent AJ, Callard R et al. Short-term, intermittent fasting induces long-lasting gut health andTerm, Intermittent Fasting Induces Long-Lasting Gut Health and TOR-independent lifespan extensionIndependent Lifespan Extension. Curr Biol 2018; 28:1714–1724 [View Article] [PubMed]
    [Google Scholar]
  42. Dong L, Meng Y, Wang J, Liu Y. Evaluation of droplet digital PCR for characterizing plasmid reference material used for quantifying ammonia oxidizers and denitrifiers. Anal Bioanal Chem 2014; 406:1701–1712 [View Article] [PubMed]
    [Google Scholar]
  43. Witte AK, Mester P, Fister S, Witte M, Schoder D et al. A systematic investigation of parameters influencing droplet rain in the Listeria monocytogenes prfA assay - reduction of ambiguous results in ddPCR. PLoS One 2016; 11:e0168179 [View Article] [PubMed]
    [Google Scholar]
  44. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 2008; 3:e2836 [View Article] [PubMed]
    [Google Scholar]
  45. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019; 37:852–857 [View Article] [PubMed]
    [Google Scholar]
  46. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13:581–583 [View Article] [PubMed]
    [Google Scholar]
  47. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article] [PubMed]
    [Google Scholar]
  48. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011; 12:2825–2830 [View Article]
    [Google Scholar]
  49. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  50. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018; 6:90 [View Article] [PubMed]
    [Google Scholar]
  51. R Core Team 2020 R: a language and environment for statisitical computing. version 4.0.3; 2020 http://www.R-project.org
  52. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016 https://ggplot2.tidyverse.org
  53. Pinheiro J, Bates D, DebRoy S, Sarkar D. 2020 nlme: linear and nonlinear mixed effects models. R package. version 3.1-152; 2020 https://CRAN.R-project.org/package=nlme
  54. Levene H. Robust tests for equality of variances. In Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB. eds Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling Menlo Park: Stanford University Press; 1960 pp 278–292
    [Google Scholar]
  55. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965; 52:591–611 [View Article]
    [Google Scholar]
  56. Student The probable error of a mean. Biometrika 1908; 6:1 [View Article]
    [Google Scholar]
  57. Whitney J. Testing for differences with the nonparametric Mann-Whitney U test. J Wound Ostomy Continence Nurs 1997; 24:12 [View Article] [PubMed]
    [Google Scholar]
  58. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013; 8:e61217 [View Article] [PubMed]
    [Google Scholar]
  59. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR et al. 2020 vegan: community ecology package. R package. version 2.5-7; 2020 https://CRAN.R-project.org/package=vegan
  60. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018; 6:226 [View Article] [PubMed]
    [Google Scholar]
  61. Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017; 551:507–511 [View Article] [PubMed]
    [Google Scholar]
  62. Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS One 2020; 15:e0227285 [View Article] [PubMed]
    [Google Scholar]
  63. Bray JR, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 1957; 27:325–349 [View Article]
    [Google Scholar]
  64. Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for omics feature selection and multiple data integration. PLoS Comput Biol 2017; 13:e1005752 [View Article] [PubMed]
    [Google Scholar]
  65. Simpson EH. Measurement of dDiversity. Nature 1949; 163:688 [View Article]
    [Google Scholar]
  66. Shannon CE, Weaver W. The Mathematical Theory of Communication Champaign, IL: University of Illinois Press; 1949
    [Google Scholar]
  67. Wang Y, Naumann U, Wright ST, Warton DI. mvabund - an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 2012; 3:471–474 [View Article]
    [Google Scholar]
  68. Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 2016; 14:320–330 [View Article] [PubMed]
    [Google Scholar]
  69. Maire J, Girvan SK, Barkla SE, Perez-Gonzalez A, Suggett DJ et al. Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs. ISME J 2021; 15:2028–2042 [View Article] [PubMed]
    [Google Scholar]
  70. Young G, Turner S, Davies JK, Sundqvist G, Figdor D. Bacterial DNA persists for extended periods after cell death. J Endod 2007; 33:1417–1420 [View Article] [PubMed]
    [Google Scholar]
  71. Salo WL, Aufderheide AC, Buikstra J, Holcomb TA. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A 1994; 91:2091–2094 [View Article] [PubMed]
    [Google Scholar]
  72. Brundin M, Figdor D, Roth C, Davies JK, Sundqvist G et al. Persistence of dead-cell bacterial DNA in ex vivo root canals and influence of nucleases on DNA decay in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110:789–794 [View Article] [PubMed]
    [Google Scholar]
  73. Wood SA, Biessy L, Latchford JL, Zaiko A, von Ammon U et al. Release and degradation of environmental DNA and RNA in a marine system. Sci Total Environ 2020; 704:135314 [View Article] [PubMed]
    [Google Scholar]
  74. Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 2017; 5:86 [View Article] [PubMed]
    [Google Scholar]
  75. Magalhães AP, França Â, Pereira MO, Cerca N. RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms. Sci Rep 2019; 9:13639 [View Article] [PubMed]
    [Google Scholar]
  76. Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002; 292:107–113 [View Article] [PubMed]
    [Google Scholar]
  77. Rivera-Ortega J, Thomé PE. Contrasting antibacterial capabilities of the surface mucus layer from three symbiotic cnidarians. Front Mar Sci 2018; 5:392 [View Article]
    [Google Scholar]
  78. Sweet MJ, Croquer A, Bythell JC. Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals. PLoS One 2011; 6:e21195 [View Article] [PubMed]
    [Google Scholar]
  79. Sweet MJ, Croquer A, Bythell JC. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 2010; 30:39–52 [View Article]
    [Google Scholar]
  80. Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 2006; 322:1–14 [View Article]
    [Google Scholar]
  81. Palincsar EE, Jones WR, Palincsar JS, Glogowski MA, Mastro JL. Bacterial Aggregates within the epidermis of the sea anemone Aiptasia pallida . The Biological Bulletin 1989; 177:130–140 [View Article]
    [Google Scholar]
  82. Gordon HA, Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev 1972; 35:390–429
    [Google Scholar]
  83. Hartman LM, van Oppen MJH, Blackall LL. Microbiota characterization of Exaiptasia diaphana from the Great Barrier Reef. Anim Microbiome 2020; 2:10 [View Article] [PubMed]
    [Google Scholar]
  84. Tortorelli G, Belderok R, Davy SK, McFadden GI, van Oppen MJH. Host Genotypic effect on algal symbiosis establishment in the coral model, the anemone Exaiptasia diaphana, from the Great Barrier Reef. Front Mar Sci 2020; 6:833 [View Article]
    [Google Scholar]
  85. Voth DE, Heinzen RA. Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii . Cell Microbiol 2007; 9:829–840 [View Article] [PubMed]
    [Google Scholar]
  86. Munn CB. The role of Vibrios in diseases of corals. Microbiol Spectr 2015; 3: [View Article] [PubMed]
    [Google Scholar]
  87. Loo K, Letchumanan V, Law JW, Pusparajah P, Goh B et al. Incidence of antibiotic resistance in Vibrio spp. Rev Aquacult 2020; 12:2590–2608 [View Article]
    [Google Scholar]
  88. Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 2013; 47:7137–7146 [View Article] [PubMed]
    [Google Scholar]
  89. Oberbeckmann S, Osborn AM, Duhaime MB. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One 2016; 11:e0159289 [View Article] [PubMed]
    [Google Scholar]
  90. Kirstein IV, Wichels A, Gullans E, Krohne G, Gerdts G. The Plastisphere - uncovering tightly attached plastic “specific” microorganisms. PLoS One 2019; 14:e0215859 [View Article] [PubMed]
    [Google Scholar]
  91. Dungan AM, van Oppen MJH, Blackall LL. Short-term exposure to sterile seawater reduces bacterial community diversity in the sea anemone, Exaiptasia diaphana . Front Mar Sci 2021; 7:599314 [View Article]
    [Google Scholar]
  92. Sorgeloos P, Bossuyt E, Laviña E, Baeza-Mesa M, Persoone G. Decapsulation of Artemia cysts: a simple technique for the improvement of the use of brine shrimp in aquaculture. Aquaculture 1977; 12:311–315 [View Article]
    [Google Scholar]
  93. Forberg T, Milligan-Myhre K. Gnotobiotic fish as models to study host-microbe interactions. In Schoeb TR, Eaton KA. eds Gnotobiotics London: Academic Press; 2017 pp 369–383 [View Article]
    [Google Scholar]
  94. Ridley EV, Wong ACN, Douglas AE. Microbe-dependent and nonspecific effects of procedures to eliminate the resident microbiota from Drosophila melanogaster . Appl Environ Microbiol 2013; 79:3209–3214 [View Article] [PubMed]
    [Google Scholar]
  95. Leigh BA, Liberti A, Dishaw LJ. Generation of germ-free Ciona intestinalis for studies of gut-microbe interactions. Front Microbiol 2016; 7:2092 [View Article] [PubMed]
    [Google Scholar]
  96. Grawunder D, Hambleton EA, Bucher M, Wolfowicz I, Bechtoldt N et al. Induction of gametogenesis in the cnidarian endosymbiosis model Aiptasia sp. Sci Rep 2015; 5:15677 [View Article] [PubMed]
    [Google Scholar]
  97. Reyes-Bermudez A, Miller DJ. In vitro culture of cells derived from larvae of the staghorn coral Acropora millepora. Coral Reefs 2009; 28:859–864 [View Article]
    [Google Scholar]
  98. Sweet MJ, Croquer A, Bythell JC. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis . Proc Biol Sci 2014; 281:20140094 [View Article] [PubMed]
    [Google Scholar]
  99. Soffer N, Gibbs PDL, Baker AC. Practical applications of contaminant-free Symbiodinium cultures grown on solid media. In Riegl B, Dodge RE. eds Proceedings — 11th International Coral Reef Symposium Fort Lauderdale Davie, FL: Nova Southeastern University National Coral Reef Institute; 2008 pp 159–163
    [Google Scholar]
  100. Weiland-Bräuer N, Neulinger SC, Pinnow N, Künzel S, Baines JF et al. Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Appl Environ Microbiol 2015; 81:6038–6052 [View Article] [PubMed]
    [Google Scholar]
  101. Rahat M, Dimentman C. Cultivation of bacteria-free Hydra viridis: missing budding factor in nonsymbiotic hydra. Science 1982; 216:67–68 [View Article] [PubMed]
    [Google Scholar]
  102. Richardson C, Hill M, Marks C, Runyen-Janecky L, Hill A. Experimental manipulation of sponge/bacterial symbiont community composition with antibiotics: sponge cell aggregates as a unique tool to study animal/microorganism symbiosis. FEMS Microbiol Ecol 2012; 81:407–418 [View Article] [PubMed]
    [Google Scholar]
  103. Mills E, Shechtman K, Loya Y, Rosenberg E. Bacteria appear to play important roles in both causing and preventing the bleaching of the coral Oculina patagonica . Mar Ecol Prog Ser 2013; 489:155–162 [View Article]
    [Google Scholar]
  104. Polne-Fuller M. A novel technique for preparation of axenic cultures of Symbiodinium (Pyrrophyta) through selective digestion by amoebae. J Phycol 1991; 27:552–554 [View Article]
    [Google Scholar]
  105. Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J 2016; 10:2280–2292 [View Article] [PubMed]
    [Google Scholar]
  106. D’Agostino A. Antibiotics in cultures of invertebrates. In Smith WL, Chanley MH. eds Proceedings — 1st Conference on Culture of Marine Invertebrate Animals Greenport Boston, MA: Springer; 1975 pp 109–133 [View Article]
    [Google Scholar]
  107. Hawkins TD, Hagemeyer JCG, Hoadley KD, Marsh AG, Warner ME. Partitioning of respiration in an animal-algal symbiosis: implications for different aerobic capacity between Symbiodinium spp. Front Physiol 2016; 7:128 [View Article] [PubMed]
    [Google Scholar]
  108. Jiang L, Hou L, Zou X, Zhang R, Wang J et al. Cloning and expression analysis of p26 gene in Artemia sinica . Acta Biochim Biophys Sin 2007; 39:351–358 [View Article] [PubMed]
    [Google Scholar]
  109. Niu Y, Defoirdt T, Baruah K, Van de Wiele T, Dong S et al. Bacillus sp. LT3 improves the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged with Vibrio campbellii by enhancing the innate immune response and by decreasing the activity of shrimp-associated vibrios. Vet Microbiol 2014; 173:279–288 [View Article] [PubMed]
    [Google Scholar]
  110. Valverde EJ, Labella AM, Borrego JJ, Castro D. Artemia spp., a susceptible host and vector for lymphocystis disease virus. Viruses 2019; 11:E506 [View Article] [PubMed]
    [Google Scholar]
  111. Korea Polar Research Institute The whole genome shotgun sequencing project of Artemia franciscana ; 2021 https://antagen.kopri.re.kr/project/genome_info_iframe.php?Code=AF01 accessed 12 June 2021
  112. Wang Y, Qian P-. Y. Conserved regions in 16S ribosome RNA sequences and primer design for studies of environmental microbes. In Nelson KE. eds Encyclopedia of Metagenomics New York: Springer; 2013
    [Google Scholar]
  113. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993; 59:695–700 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000314
Loading
/content/journal/acmi/10.1099/acmi.0.000314
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error