-
Volume 4,
Issue 1,
2022
Volume 4, Issue 1, 2022
- Research Articles
-
-
-
Evolution of two-component quorum sensing systems
More LessQuorum sensing (QS) is a cell-to-cell communication system that enables bacteria to coordinate their gene expression depending on their population density, via the detection of small molecules called autoinducers. In this way bacteria can act collectively to initiate processes like bioluminescence, virulence and biofilm formation. Autoinducers are detected by receptors, some of which are part of two-component signal transduction systems (TCS), which comprise of a (usually membrane-bound) sensor histidine kinase (HK) and a cognate response regulator (RR). Different QS systems are used by different bacterial taxa, and their relative evolutionary relationships have not been extensively studied. To address this, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to identify all the QS HKs and RRs that are part of TCSs and examined their conservation across microbial taxa. We compared the combinations of the highly conserved domains in the different families of receptors and response regulators using the Simple Modular Architecture Research Tool (SMART) and KEGG databases, and we also carried out phylogenetic analyses for each family, and all families together. The distribution of the different QS systems across taxa, indicates flexibility in HK–RR pairing and highlights the need for further study of the most abundant systems. For both the QS receptors and the response regulators, our results indicate close evolutionary relationships between certain families, highlighting a common evolutionary history which can inform future applications, such as the design of novel inhibitors for pathogenic QS systems.
-
-
-
-
Genetic and lipidomic analyses suggest that Nostoc punctiforme, a plant-symbiotic cyanobacterium, does not produce sphingolipids
Sphingolipids, a class of amino-alcohol-based lipids, are well characterized in eukaryotes and in some anaerobic bacteria. However, the only sphingolipids so far identified in cyanobacteria are two ceramides (i.e., an acetylsphingomyelin and a cerebroside), both based on unbranched, long-chain base (LCB) sphingolipids in Scytonema julianum and Moorea producens , respectively. The first step in de novo sphingolipid biosynthesis is the condensation of l-serine with palmitoyl-CoA to produce 3-keto-diyhydrosphingosine (KDS). This reaction is catalyzed by serine palmitoyltransferase (SPT), which belongs to a small family of pyridoxal phosphate-dependent α-oxoamine synthase (AOS) enzymes. Based on sequence similarity to molecularly characterized bacterial SPT peptides, we identified a putative SPT (Npun_R3567) from the model nitrogen-fixing, plant-symbiotic cyanobacterium, Nostoc punctiforme strain PCC 73102 (ATCC 29133). Gene expression analysis revealed that Npun_R3567 is induced during late-stage diazotrophic growth in N. punctiforme . However, Npun_R3567 could not produce the SPT reaction product, 3-keto-diyhydrosphingosine (KDS), when heterologously expressed in Escherichia coli . This agreed with a sphingolipidomic analysis of N. punctiforme cells, which revealed that no LCBs or ceramides were present. To gain a better understanding of Npun_R3567, we inferred the phylogenetic position of Npun_R3567 relative to other bacterial AOS peptides. Rather than clustering with other bacterial SPTs, Npun_R3567 and the other cyanobacterial BioF homologues formed a separate, monophyletic group. Given that N. punctiforme does not appear to possess any other gene encoding an AOS enzyme, it is altogether unlikely that N. punctiforme is capable of synthesizing sphingolipids. In the context of cross-kingdom symbiosis signalling in which sphingolipids are emerging as important regulators, it appears unlikely that sphingolipids from N. punctiforme play a regulatory role during its symbiotic association with plants.
-
-
-
Antibiotics reduce bacterial load in Exaiptasia diaphana, but biofilms hinder its development as a gnotobiotic coral model
More LessCoral reefs are declining due to anthropogenic disturbances, including climate change. Therefore, improving our understanding of coral ecosystems is vital, and the influence of bacteria on coral health has attracted particular interest. However, a gnotobiotic coral model that could enhance studies of coral–bacteria interactions is absent. To address this gap, we tested the ability of treatment with seven antibiotics for 3 weeks to deplete bacteria in Exaiptasia diaphana, a sea anemone widely used as a coral model. Digital droplet PCR (ddPCR) targeting anemone Ef1-α and bacterial 16S rRNA genes was used to quantify bacterial load, which was found to decrease six-fold. However, metabarcoding of bacterial 16S rRNA genes showed that alpha and beta diversity of the anemone-associated bacterial communities increased significantly. Therefore, gnotobiotic E. diaphana with simplified, uniform bacterial communities were not generated, with biofilm formation in the culture vessels most likely impeding efforts to eliminate bacteria. Despite this outcome, our work will inform future efforts to create a much needed gnotobiotic coral model.
-
-
-
A case report of Salmonella enterica serovar Corvallis from environmental isolates from Cambodia and clinical isolates in the UK
More LessSalmonella enterica subspecies enterica serovar Corvallis (S. Corvallis) has been identified as a human pathogen and as a food contaminant. Diarrhoeal disease is a common diagnosis in tourists visiting Southeast Asia, often with unknown aetiology. However, numerous public health institutes have identified Salmonella as a common causative agent when consuming contaminated food and water. Genomic data from environmental isolates from a Cambodian informal market were uploaded to the National Center for Biotechnology Information (NCBI) platform, allowing the novel sequences to be compared to global whole-genome sequence archives. The comparison revealed that two human clinical isolates from England and four of the environmental isolates were closely related, with an average single nucleotide polymorphism (SNP) difference of 1 (0–3 SNPs). A maximum-likelihood tree based on core SNPs was generated comparing the 4 isolates recovered from a Cambodian informal market with 239 isolates of S. Corvallis received from routine surveillance of human salmonellosis in England and confirmed the close relationship. In addition, the environmental isolates clustered into a broader phylogenetic group within the S. Corvallis population containing 68 additional human isolates, of which 42 were from patients who reported recent international travel, almost exclusively to Southeast Asia. The environmental isolates of S. Corvallis isolated from an informal market in Cambodia are concerning for public health due to their genetic similarity to isolates (e.g. clinical isolates from the UK) with known human virulence and pathogenicity. This study emphasizes the benefits of global and public data sharing of pathogen genomes.
-
-
-
Surveillance of SARS-CoV-2 RNA in open-water sewage canals contaminated with untreated wastewater in resource-constrained regions
Sewage-based surveillance for COVID-19 has been described in multiple countries and multiple settings. However, nearly all are based on testing sewage treatment plant inflows and outflows using structured sewage networks and treatment systems. Many resource-limited countries worldwide have open canals, lakes and other such waste-contaminated water bodies that act as a means of sewage effluent discharge. These could serve as hyperlocal testing points for detecting COVID-19 incidence using the effluents from nearby communities. However, a sensitive, robust and economical method of SARS-CoV-2 RNA detection from open waste contaminated water bodies in resource-constrained regions is currently lacking. A protocol employed in Bangalore, India, where SARS-CoV-2 RNA levels were evaluated using two open canal systems during the first and second waves in the present study. SARS-CoV-2 RNA was measured using two strategies: a modified TrueNATTM microchip-based rapid method and traditional real-time reverse transcription-PCR (rRT-PCR), which were compared for analytical sensitivity, cost and relative ease of use. SARS-CoV-2 RNA levels were detected at lower levels during the earlier half compared to the later half of the first wave in 2020. The opposite trend was seen in the second wave in 2021. Interestingly, the change in RNA levels corresponded with the community burden of COVID-19 at both sites. The modified TrueNATTM method yielded concordant results to traditional rRT-PCR in sensitivity and specificity and cost. It provides a simple, cost-effective method for detecting and estimating SARS-CoV-2 viral RNA from open-water sewage canals contaminated with human excreta and industrial waste that can be adopted in regions or countries that lack structured sewage systems.
-
-
-
Rare genera differentiate urban green space soil bacterial communities in three cities across the world
Vegetation complexity is potentially important for urban green space designs aimed at fostering microbial biodiversity to benefit human health. Exposure to urban microbial biodiversity may influence human health outcomes via immune training and regulation. In this context, improving human exposure to microbiota via biodiversity-centric urban green space designs is an underused opportunity. There is currently little knowledge on the association between vegetation complexity (i.e. diversity and structure) and soil microbiota of urban green spaces. Here, we investigated the association between vegetation complexity and soil bacteria in urban green spaces in Bournemouth, UK; Haikou, China; and the City of Playford, Australia by sequencing the 16S rRNA V4 gene region of soil samples and assessing bacterial diversity. We characterized these green spaces as having ‘low’ or ‘high’ vegetation complexity and explored whether these two broad categories contained similar bacterial community compositions and diversity around the world. Within cities, we observed significantly different alpha and beta diversities between vegetation complexities; however, these results varied between cities. Rare genera (<1% relative abundance individually, on average 35% relative abundance when pooled) were most likely to be significantly different in sequence abundance between vegetation complexities and therefore explained much of the differences in microbial communities observed. Overall, general associations exist between soil bacterial communities and vegetation complexity, although these are not consistent between cities. Therefore, more in-depth work is required to be done locally to derive practical actions to assist the conservation and restoration of microbial communities in urban areas.
-
- Short Communications
-
-
-
An evaluation of risk factors for Staphylococcus aureus colonization in a pre-surgical population
More LessStaphylococcus aureus (SA) colonization has significant implications in healthcare-associated infections. Here we describe a prospective study conducted in pre-surgical outpatients, done with the aim of identifying demographic and clinical risk factors for SA colonization. We found younger age to be a potential predictor of SA colonization.
-
-
-
-
Evaluation of the virucidal efficacy of Klaran UVC LEDs against surface-dried norovirus
More LessHuman norovirus (HuNoV) is a highly contagious pathogenic virus that is transmitted through contaminated food, water, high-touch surfaces and aerosols. Globally, there are an estimated 685 million infections annually due to norovirus, including 200 million affecting children under the age of 5. HuNoV causes approximately 50, 000 child deaths per year and costs an estimated USD $60 billion annually in healthcare. This study sought to determine the inactivation profile of ultraviolet subtype C (UVC) against norovirus using a UVC light-emitting diode (LED) array, KL265-50V-SM-WD. The array emitted radiation at 269 nm peak wavelength and a measured fluence of 1.25 mW cm−2 at a 7 cm source–surface distance. Since the HuNoV is not cultivable, the study utilized feline calicivirus (FCV) ATCC VR-782, a recommended surrogate as challenge organism. The test followed modified ASTM E2197. Assessment of virus inactivation was performed using a plaque assay method. With irradiance at a UVC dose of 22.5 mJ cm−2, the study obtained 99.9 % virus reduction (3 log reduction). The results demonstrate that the UVC LED array can provide effective inactivation of HuNoV.
-
- Case Reports
-
-
-
Case Report: Vibrio fluvialis isolated from a wound infection after a piercing trauma in the Baltic Sea
Vibrio spp. are Gram-negative bacteria found in marine ecosystems. Non-cholera Vibrio spp. can cause gastrointestinal infections and can also lead to wound infections through exposure to contaminated seawater. Vibrio infections are increasingly documented from the Baltic Sea due to extended warm weather periods. We describe the first isolation of Vibrio fluvialis from a wound infection acquired by an impalement injury in the shallow waters of the Baltic Sea. The severe infection required amputation of the third toe. Whole genome sequencing of the isolate was performed and revealed a genome consisting of two circular chromosomes with a size of 1.57 and 3.24 Mb.
-
-
- Pedagogy
-
-
-
Catching the virus – a peer-to-peer game that encourages active participation in microbiology lectures
More LessAn important part of learning within lectures and classrooms is active participation, but this is sometimes difficult in larger lecture rooms. Questioning students is also not very fruitful in larger rooms for many reasons and invariably results in a wall of silence. Playing active-learning games changes the student–teacher dynamic and energizes the lecture room, making the lecture more memorable and worthwhile for the students. In our microbiological lectures, particularly lectures on virology and immunology, students play the ‘catch-the-virus’ game. As all students are in the game together, there is a competitive edge, and students forget about the anxiety of the the lecture theatre. Importantly, because of the nature of the game, the entire lecture room is involved, including students in the back rows. Interestingly, the recent coronavirus disease 2019 (COVID-19) pandemic, and its impact on student lives, makes the catch-a-virus game even more poignant.
-
-
Volumes and issues
Most Read This Month
