1887

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel zoonotic coronavirus that was identified in 2012. MERS-CoV infection in humans can result in an acute, severe respiratory disease and in some cases multi-organ failure; the global mortality rate is approximately 35 %. The MERS-CoV spike (S) protein is a major target for neutralizing antibodies in infected patients. The MERS-CoV microneutralization test (MNt) is the gold standard method for demonstrating prior infection. However, this method requires the use of live MERS-CoV in biosafety level 3 (BSL-3) containment. The present work describes the generation and validation of S protein-bearing vesicular stomatitis virus (VSV) pseudotype particles (VSV-MERS-CoV-S) in which the VSV glycoprotein G gene has been replaced by the luciferase reporter gene, followed by the establishment of a pseudoparticle-based neutralization test to detect MERS-CoV neutralizing antibodies under BSL-2 conditions. Using a panel of human sera from confirmed MERS-CoV patients, the VSV-MERS-CoV particle neutralization assay produced results that were highly comparable to those of the microneutralization test using live MERS-CoV. The results suggest that the VSV-MERS-CoV-S pseudotype neutralization assay offers a highly specific, sensitive and safer alternative method to detect MERS-CoV neutralizing antibodies in human sera.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000057
2019-11-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/acmi/1/9/acmi000057.html?itemId=/content/journal/acmi/10.1099/acmi.0.000057&mimeType=html&fmt=ahah

References

  1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367:1814–1820 [View Article]
    [Google Scholar]
  2. Bermingham A, Chand MA, Brown CS, Aarons E, Tong C et al. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the middle East, September 2012. Euro Surveill 2012; 17:20290
    [Google Scholar]
  3. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015; 386:995–1007 [View Article]
    [Google Scholar]
  4. Kupferschmidt K, diseases E. Emerging diseases. Soaring MERS cases in Saudi Arabia raise alarms. Science 2014; 344:457–458 [View Article]
    [Google Scholar]
  5. Min J, Cella E, Ciccozzi M, Pelosi A, Salemi M et al. The global spread of middle East respiratory syndrome: an analysis fusing traditional epidemiological tracing and molecular phylodynamics. Glob Health Res Policy 2016; 1:14 [View Article]
    [Google Scholar]
  6. Choi JY. An outbreak of middle East respiratory syndrome coronavirus infection in South Korea, 2015. Yonsei Med J 2015; 56:1174–1176 [View Article]
    [Google Scholar]
  7. Mackay IM, Arden KE. Middle East respiratory syndrome: an emerging coronavirus infection tracked by the crowd. Virus Res 2015; 202:60–88 [View Article]
    [Google Scholar]
  8. Drosten C, Günther S, Preiser W, van der Werf S, Brodt H-R et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348:1967–1976 [View Article]
    [Google Scholar]
  9. Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 361:1319–1325 [View Article]
    [Google Scholar]
  10. Hui DS, Memish ZA, Zumla A. Severe acute respiratory syndrome vs. the middle East respiratory syndrome. Curr Opin Pulm Med 2014; 20:233–241 [View Article]
    [Google Scholar]
  11. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 2005; 102:2430–2435 [View Article]
    [Google Scholar]
  12. Hemida MG, Elmoslemany A, Al-Hizab F, Alnaeem A, Almathen F et al. Dromedary camels and the transmission of middle East respiratory syndrome coronavirus (MERS-CoV). Transbound Emerg Dis 2017; 64:344–353 [View Article]
    [Google Scholar]
  13. Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ et al. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis 2014; 20:1012–1015 [View Article]
    [Google Scholar]
  14. Meyer B, Müller MA, Corman VM, Reusken CBEM, Ritz D et al. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis 2014; 20:552–559 [View Article]
    [Google Scholar]
  15. Reusken CB, Haagmans BL, Müller MA, Gutierrez C, Godeke G-J et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis 2013; 13:859–866 [View Article]
    [Google Scholar]
  16. Müller MA, Corman VM, Jores J, Meyer B, Younan M et al. Mers coronavirus neutralizing antibodies in camels, eastern Africa, 1983-1997. Emerg Infect Dis 2014; 20:2093–2095 [View Article]
    [Google Scholar]
  17. Hemida MG, Perera RA, Al Jassim RA, Kayali G, Siu LY et al. Seroepidemiology of middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity. Euro Surveill 2014; 19:20828 [View Article]
    [Google Scholar]
  18. Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495:251–254 [View Article]
    [Google Scholar]
  19. Yang Y, Deng Y, Wen B, Wang H, Meng X et al. The amino acids 736-761 of the MERS-CoV spike protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. Viral Immunol 2014; 27:543–550 [View Article]
    [Google Scholar]
  20. Du L, Yang Y, Zhou Y, Lu L, Li F et al. Mers-Cov spike protein: a key target for antivirals. Expert Opin Ther Targets 2017; 21:131–143 [View Article]
    [Google Scholar]
  21. Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 2013; 87:5502–5511 [View Article]
    [Google Scholar]
  22. Yang Y, Deng Y, Wen B, Wang H, Meng X et al. The amino acids 736-761 of the MERS-CoV spike protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. Viral Immunol 2014; 27:543–550 [View Article]
    [Google Scholar]
  23. Meyer B, Drosten C, Müller MA. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res 2014; 194:175–183 [View Article]
    [Google Scholar]
  24. Whitt MA. Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods 2010; 169:365–374 [View Article]
    [Google Scholar]
  25. Giroglou T, Cinatl J, Rabenau H, Drosten C, Schwalbe H et al. Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein. J Virol 2004; 78:9007–9015 [View Article]
    [Google Scholar]
  26. Yang ZY, Werner HC, Kong W-pui, Leung K, Traggiai E et al. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci USA 2005; 102:797–801 [View Article]
    [Google Scholar]
  27. Millet JK, Whittaker GR. Host cell entry of middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci USA 2014; 111:15214–15219 [View Article]
    [Google Scholar]
  28. Urbanowicz RA, McClure CP, King B, Mason CP, Ball JK et al. Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay. J Gen Virol 2016; 97:2265–2279 [View Article]
    [Google Scholar]
  29. Alharbi NK, Padron-Regalado E, Thompson CP, Kupke A, Wells D et al. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine 2017; 35:3780–3788 [View Article]
    [Google Scholar]
  30. Molesti E, Wright E, Terregino C, Rahman R, Cattoli G et al. Multiplex evaluation of influenza neutralizing antibodies with potential applicability to in-field serological studies. J Immunol Res 2014; 2014:1–11 [View Article]
    [Google Scholar]
  31. Joglekar AV, Sandoval S. Pseudotyped lentiviral vectors: one vector, many guises. Hum Gene Ther Methods 2017; 28:291–301 [View Article]
    [Google Scholar]
  32. Park SW, Perera RAPM, Choe PG, Lau EHY, Choi SJ et al. Comparison of serological assays in human Middle East respiratory syndrome (MERS)-coronavirus infection. Euro Surveill. 2015; 20:30042 [View Article]
    [Google Scholar]
  33. Perera RA, Wang P, Gomaa MR, El-Shesheny R, Kandeil A et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill 2013; 18:20574 [View Article]
    [Google Scholar]
  34. Gierer S, Hofmann-Winkler H, Albuali WH, Bertram S, Al-Rubaish AM et al. Lack of MERS coronavirus neutralizing antibodies in humans, eastern Province, Saudi Arabia. Emerg Infect Dis 2013; 19:2034–2036 [View Article]
    [Google Scholar]
  35. Wang L, Shi W, Joyce MG, Modjarrad K, Zhang Y et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 2015; 6: [View Article]
    [Google Scholar]
  36. Tang X-C, Agnihothram SS, Jiao Y, Stanhope J, Graham RL et al. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci U S A 2014; 111:E2018–E2026 [View Article]
    [Google Scholar]
  37. Barlan A, Zhao J, Sarkar MK, Li K, McCray PB et al. Receptor variation and susceptibility to middle East respiratory syndrome coronavirus infection. J Virol 2014; 88:4953–4961 [View Article]
    [Google Scholar]
  38. Park JE, Li K, Barlan A, Fehr AR, Perlman S et al. Proteolytic processing of middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci USA 2016; 113:12262–12267 [View Article]
    [Google Scholar]
  39. Letko M, Miazgowicz K, McMinn R, Seifert SN, Sola I et al. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Rep 2018; 24:1730–1737 [View Article]
    [Google Scholar]
  40. Fukuma A, Tani H, Taniguchi S, Shimojima M, Saijo M et al. Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein. Arch Virol 2015; 160:2293–2300 [View Article]
    [Google Scholar]
  41. Tamin A, Harcourt BH, Lo MK, Roth JA, Wolf MC et al. Development of a neutralization assay for Nipah virus using pseudotype particles. J Virol Methods 2009; 160:1–6 [View Article]
    [Google Scholar]
  42. Molesti E, Cattoli G, Ferrara F, Böttcher-Friebertshäuser E, Terregino C et al. The production and development of H7 influenza virus pseudotypes for the study of humoral responses against avian viruses. J Mol Genet Med 2012; 7:315–320
    [Google Scholar]
  43. Molesti E et al. Comparative serological assays for the study of H5 and H7 avian influenza viruses. Influenza Res Treat, 2013 2013p. 286158
    [Google Scholar]
  44. Qiu C, Huang Y, Zhang A, Tian D, Wan Y et al. Safe pseudovirus-based assay for neutralization antibodies against influenza A(H7N9) virus. Emerg Infect Dis 2013; 19:1685–1687 [View Article]
    [Google Scholar]
  45. Wang Q, Qi J, Yuan Y, Xuan Y, Han P et al. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe 2014; 16:328–337 [View Article]
    [Google Scholar]
  46. Yang Y, Du L, Liu C, Wang L, Ma C et al. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc Natl Acad Sci USA 2014; 111:12516–12521 [View Article]
    [Google Scholar]
  47. Fukushi S, Mizutani T, Saijo M, Kurane I, Taguchi F et al. Evaluation of a novel vesicular stomatitis virus pseudotype-based assay for detection of neutralizing antibody responses to SARS-CoV. J Med Virol 2006; 78:1509–1512 [View Article]
    [Google Scholar]
  48. Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 2003; 100:12995–13000 [View Article]
    [Google Scholar]
  49. Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS et al. Reverse genetics with a full-length infectious cDNA of the middle East respiratory syndrome coronavirus. Proc Natl Acad Sci USA 2013; 110:16157–16162 [View Article]
    [Google Scholar]
  50. Muth D, Meyer B, Niemeyer D, Schroeder S, Osterrieder N et al. Transgene expression in the genome of middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing red-mediated recombination cloning. J Gen Virol 2017; 98:2461–2469 [View Article]
    [Google Scholar]
  51. Chan KH, Chan JFW, Tse H, Chen H, Lau CCY et al. Cross-Reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J Infect 2013; 67:130–140 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000057
Loading
/content/journal/acmi/10.1099/acmi.0.000057
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error