1887

Abstract

SUMMARY

The influence of relative humidity (r.h.) on the survival of vesicular exanthema virus (VEV) in aerosols at 1 s and during the next 5 min when generated from phosphate buffer solution containing polyhydroxy compounds, dimethyl sulphoxide, salt or protein has been examined. VEV was sensitive to r.h. in the range of 40 to 60% in the presence of bovine serum albumin, glucose, inositol or phosphate buffer. Addition of sodium chloride stabilized the virus in aerosols at mid-range r.h. both immediately after generation and after a period of storage for 5 min. In the presence of dimethyl sulphoxide or glycerol, virus survival was reduced at 20% r.h. at 1 s and at all r.h. during the first 5 min. Pre-humidification did not produce any significant difference in virus recovery.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-48-2-411
1980-06-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/48/2/JV0480020411.html?itemId=/content/journal/jgv/10.1099/0022-1317-48-2-411&mimeType=html&fmt=ahah

References

  1. Akers T. O., Bond S., Goldberg L. J. 1966; Effect of temperature and relative humidity on survival of airborne Columbia SK group viruses. Applied Microbiology 14:361–364
    [Google Scholar]
  2. Andrewes C. H., Pereira H. G., Wildy P. 1978; Caliciviridae. In Viruses of Vertebrates 4th edition chapter 2 pp 38–41 London: Bailliere Tindall;
    [Google Scholar]
  3. Barlow D. F. 1972a; The aerosol stability of a strain of foot-and-mouth disease virus and the effects on stability of precipitation with ammonium sulphate, methanol or polyethylene glycol. Journal of General Virology 15:17–24
    [Google Scholar]
  4. Barlow D. F. 1972b; The effects of various protecting agents on the inactivation of foot-and-mouth disease virus in aerosols and during freeze-drying. Journal of General Virology 17:281–288
    [Google Scholar]
  5. Benbough J. E. 1969; The effect of relative humidity on the survival of airborne Semliki Forest virus. Journal of General Virology 4:473–477
    [Google Scholar]
  6. Benbough J. E. 1971; Some factors affecting the survival of airborne viruses. Journal of General Virology 10:209–220
    [Google Scholar]
  7. De Castro M. P. 1964; Behaviour of foot-and-mouth disease virus in cell cultures: susceptibility of the IB-RS-2 cell line. Archivos do Instituto Biologico, Sao Paulo 31:63–78
    [Google Scholar]
  8. De Jong J. C., Harmsen M., Trouwborst T., Winkler K. C. 1974; Inactivation of encephalomyocarditis virus in aerosols: fate of virus protein and ribonucleic acid. Applied Microbiology 27:59–65
    [Google Scholar]
  9. De Jong J. C., Harmsen M., Trouwborst T. 1975; Factors in the inactivation of encephalomyocarditis virus in aerosols. Infection and Immunity 12:29–35
    [Google Scholar]
  10. Donaldson A. I. 1972; The influence of relative humidity on the aerosol stability of different strains of foot-and-mouth disease virus suspended in saliva. Journal of General Virology 15:25–33
    [Google Scholar]
  11. Donaldson A. I., Ferris N. P. 1974; Airborne stability of swine vesicular disease virus. Veterinary Record 95:19–21
    [Google Scholar]
  12. Donaldson A. I., Ferris N. P. 1976; The survival of some air-borne animal viruses in relation to relative humidity. Veterinary Microbiology 1:413–420
    [Google Scholar]
  13. Druett H. A. 1969; A mobile form of the Henderson apparatus. Journal of Hygiene, Cambridge 67:437–448
    [Google Scholar]
  14. Dubovi E. L., Akers T. O. 1970; Airborne stability of tailless bacterial viruses S-13 and MS-2. Applied Microbiology 19:624–628
    [Google Scholar]
  15. Fenner F. 1976; Classification and nomenclature of viruses. Intervirology 7:1–116
    [Google Scholar]
  16. Goldberg L. J., Watkins H. M. S., Boerke E. E., Chatigny M. A. 1958; The use of a rotating drum for the study of aerosols over extended periods of time. American Journal of Hygiene 68:85–93
    [Google Scholar]
  17. Harper G. J. 1961; Airborne micro-organisms: survival tests with four viruses. Journal of Hygiene, Cambridge 59:479–486
    [Google Scholar]
  18. Harper G. J. 1963; Some observations on the influence of suspending fluids on the survival of airborne viruses. Proceedings of the First International Symposium on Aerobiology Berkeley, California, pp 335–343 The Naval Biological Laboratory; Oakland, Calif., U.S.A.:
    [Google Scholar]
  19. Hatch M. T., Warren J. C. 1969; Enhanced recovery of airborne T, coliphage and Pasteurella pestis bacteriophage by means of a presampling humidification technique. Applied Microbiology 17:685–689
    [Google Scholar]
  20. Hemmes J. H., Winkler K. C., Kool S. M. 1960; Virus survival as a seasonal factor in influenza and poliomyelitis. Nature, London 188:430–431
    [Google Scholar]
  21. May K. R. 1973; The Collison nebulizer: description, performance and application. Aerosol Science 4:235–243
    [Google Scholar]
  22. May K. R., Harper G. J. 1957; The efficiency of various liquid impinger samplers in bacterial aerosols. British Journal of Industrial Medicine 14:287–297
    [Google Scholar]
  23. Schaffer F. L., Soergel M. E., Straube D. C. 1976; Survival of airborne influenza virus: effects of propagating host, relative humidity, and composition of spray fluids. Archives of Virology 51:263–273
    [Google Scholar]
  24. Szmant H. H. 1971; Chemistry of DMSO. In Dimethyl Sulfoxide vol 1 Basic Concepts of DMSO chapter 1 pp 1–97 Edited by Jacob S. W., Rosenbaum E. E., Wood D. C. New York: Marcel Dekker;
    [Google Scholar]
  25. Trouwborst T., De Jong J. C. 1973; Surface inactivation, an important mechanism of aerosol inactivation for viruses inactivated at high relative humidity. In Proceedings of the Fourth International Symposium on Aerobiology Enschede pp 137–140 Edited by Hers J. F. Ph., Winkler K. C. Utrecht: Oosthoek Publishing Company;
    [Google Scholar]
  26. Warren J. C., Akers T. G., Dubovi E. J. 1969; Effect of prehumidification on sampling of selected airborne viruses. Applied Microbiology 18:893–896
    [Google Scholar]
  27. Wawrzkiewicz J., Smale C. J., Brown F. 1968; Biochemical and biophysical characteristics of vesicular exanthema virus and the viral ribonucleic acid. Archiv fur die gesamte Virusforschung 25:337–351
    [Google Scholar]
  28. Webb S. J. 1965 Bound Water in Biological Integrity, p 40 Springfield, Illinois: Charles C. Thomas;
    [Google Scholar]
  29. Webb S. J., Bather R., Hodges R. W. 1963; The effect of relative humidity and inositol on air-borne viruses. Canadian Journal of Microbiology 9:87–92
    [Google Scholar]
  30. Zee Y. C., Hackett A. J., Madin S. H. 1968; Electron microscopic studies of vesicular exanthema of swine virus: intracytoplasmic viral cystal formation in cultured pig kidney cells. American Journal of Veterinary Research 29:1025–1032
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-48-2-411
Loading
/content/journal/jgv/10.1099/0022-1317-48-2-411
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error