1887

Abstract

Spectroscopic analysis of membranes isolated from , along with analysis of its genome, indicates that the cytochrome branch of its respiratory pathway consists of a modified complex that contains two cytochromes in its subunit, similar to other acid-fast bacteria, and an -type cytochrome oxidase. A functional association of the cytochrome and complexes was indicated by the findings that levels of detergent sufficient to completely disrupt isolated membranes failed to inhibit quinol-driven O reduction, but known inhibitors of the complex did inhibit quinol-driven O reduction. The gene for subunit II of the -type oxidase indicates the presence of additional charged residues in a predicted extramembrane domain, which could mediate an intercomplex association. However, high concentrations of monovalent salts had no effect on O reduction, suggesting that ionic interactions between extramembrane domains do not play the major role in stabilizing the interaction. Divalent cations did inhibit electron transfer, likely by distorting the electron-transfer interface between cytochrome and subunit II. Soluble cytochrome cannot donate electrons to the -type oxidase, even though key cytochrome -binding residues are conserved, probably because the additional residues of subunit II prevent the binding of soluble cytochrome . The results indicate that hydrophobic interactions are the primary forces maintaining the interaction, but ionic interactions may assist in aligning the two complexes for efficient electron transfer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28723-0
2006-03-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/823.html?itemId=/content/journal/micro/10.1099/mic.0.28723-0&mimeType=html&fmt=ahah

References

  1. Assempour M, Lim D, Hill B. C. 1998; Electron transfer kinetics during the reduction and turnover of the cytochrome caa [sub]3[/sub] complex from Bacillus subtilus . Biochemistry 37:9991–9998 [CrossRef]
    [Google Scholar]
  2. Beggs M. L, Crawford J. T, Eisenach K. D. 1995; Isolation and sequencing of the replication region of Mycobacterium avium plasmid pLR7. J Bacteriol 177:4836–4840
    [Google Scholar]
  3. Bengtsson J, Tjalsma H, Rivolta C, Hederstedt L. 1999; Subunit II of Bacillus subtilis cytochrome c oxidase is a lipoprotein. J Bacteriol 181:685–688
    [Google Scholar]
  4. Bertsova Y. V, Bogachev A. V, Skulachev V. P. 1997; Generation of protonic potential by the bd -type quinol oxidase of Azotobacter vinelandii . FEBS Lett 414:369–372 [CrossRef]
    [Google Scholar]
  5. Castresana J, Lubben M, Saraste M, Heggins D. G. 1994; Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J 13:2516–2525
    [Google Scholar]
  6. Cole S. T, Brosch R, Parkhill J. & 39 other authors; 1998; Decifering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  7. Crinson M, Nicholls P. 1992; Routes of electron transfer in beef heart cytochrome c oxidase: is there a unique pathway used by all reductants?. Biochem Cell Biol 70:301–308 [CrossRef]
    [Google Scholar]
  8. Daldal F, Mandaci S, Winterstein C, Myllykallio H, Cuyck K, Zannoni D. 2001; Mobile cytochrome c [sub]2[/sub] and membrane-anchored cytochrome c [sub]y[/sub] are both efficient electron donors to the cbb [sub]3[/sub]- and aa [sub]3[/sub]-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides . J Biol Chem 183:2013–2024
    [Google Scholar]
  9. De Bruijn F. J, Rossbach S. 1994; Transposon mutagenesis. In Methods for General and Molecular Bacteriology pp  387–405 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. D'Mello R, Hill S, Poole R. K. 1996; The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142:755–763 [CrossRef]
    [Google Scholar]
  11. Drachev L. A, Jasaitis A. A, Kaulen A. D, Kondrashin A. A, Chu L. V, Semenov A. Y, Severina I. I, Skulachev V. P. 1976; Reconstitution of biological molecular generators of electric current. Cytochrome oxidase. J Biol Chem 251:7072–7076
    [Google Scholar]
  12. Gao X, Wen X, Esser L, Quinn B, Yu L, Yu C. A, Xia D. 2003; Structural basis for the quinone reduction in the bc [sub]1[/sub] complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc [sub]1[/sub] with bound substrate and inhibitors at the Qi site. Biochemistry 42:9067–9080 [CrossRef]
    [Google Scholar]
  13. Hiser L, Valentin M. D, Hamer A. G, Hosler J. P. 2000; Cox11p is required for stable formation of the Cu[sub]B[/sub] and magnesium centers of cytochrome c oxidase. J Biol Chem 275:619–623 [CrossRef]
    [Google Scholar]
  14. Hosler J. P, Fetter J, Tecklenburg M. M. J, Espe M, Lerma C, Ferguson-Miller S. 1992; Cytochrome aa [sub]3[/sub] of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase: purification, kinetics, proton pumping and spectral analysis. J Biol Chem 267:24264–24272
    [Google Scholar]
  15. Hosler J. P, Shapleigh J. P. 2002; Principles of aerobic respiration. In Encyclopedia of Environmental Microbiology pp  149–160 Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  16. Junemann S. 1997; Cytochrome bd terminal oxidase. Biochim Biophys Acta 1321107–127 [CrossRef]
    [Google Scholar]
  17. Jurtshuk P, Mueller T. J, Wong T. Y Jr. 1981; Isolation and purification of the cytochrome oxidase of Azotobacter vinelandii . Biochim Biophys Acta 637:374–382 [CrossRef]
    [Google Scholar]
  18. Kana B. D, Weinstein E. A, Avarbock D, Dawes S. S, Rubin H, Mizrahi V. 2001; Characterization of the cydAB -encoded cytochrome bd oxidase from Mycobacterium smegmatis . J Bacteriol 183:7076–7086 [CrossRef]
    [Google Scholar]
  19. Kusumoto K, Sakiyama M, Sakamoto J, Noguchi S, Sone N. 2000; Menaquinol oxidase activity and primary structure of cytochrome bd from the amino-acid fermenting bacterium Corynebacterium glutamicum . Arch Microbiol 173:390–397 [CrossRef]
    [Google Scholar]
  20. Lee B.-Y, Hefta S. A, Brennan P. J. 1992; Characterization of the major membrane protein of virulent Mycobacterium tuberculosis . Infect Immun 60:2066–2074
    [Google Scholar]
  21. Maneg O, Malatesta F, Ludwig B, Drosou V. 2004; Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios. Biochim Biophys Acta 1655274–281 [CrossRef]
    [Google Scholar]
  22. Matsoso L. G, Kana B. V, Crellin P. K. 7 other authors 2005; Function of the cytochrome bc [sub]1[/sub]- aa [sub]3[/sub] branch of the respiratory network in mycobactera and network adaptation occurring in response to its disruption. J Bacteriol 187:6300–6308 [CrossRef]
    [Google Scholar]
  23. Niebisch A, Bott M. 2001; Molecular analysis of the cytochrome bc [sub]1[/sub]- aa [sub]3[/sub] branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c [sub]1[/sub]. Arch Microbiol 175:282–294 [CrossRef]
    [Google Scholar]
  24. Niebisch A, Bott M. 2003; Purification of a cytochrome bc-aa [sub]3[/sub] supercomplex with quinol oxidase activity from Corynebacterium glutamicum . Identification of a fourth subunit of cytochrome aa [sub]3[/sub] oxidase and mutational analysis of diheme cytochrome c [sub]1[/sub]. J Biol Chem 278:4339–4346 [CrossRef]
    [Google Scholar]
  25. Sakamoto J, Shibata T, Mine T, Miyahara R, Torigoe T, Noguchi S, Matsushita K, Sone N. 2001; Cytochrome c oxidase contains an extra charged amino acid cluster in a new type of respiratory chain in the amino-acid-producing Gram-positive bacterium Corynebacterium glutamicum . Microbiology 147:2865–2871
    [Google Scholar]
  26. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sone N. 1990; Respiration-driven proton pumps. In The Bacteria pp  1–32 Edited by Krulwich T. A. New York: Academic Press;
    [Google Scholar]
  28. Sone N, Nagata K, Kojima H, Tajima J, Kodera Y, Kanamaru T, Noguchi S, Sakamoto J. 2001; A novel hydrophobic diheme c -type cytochrome. Purification from Corynebacterium glutamicum and analysis of the QcrCBA operon encoding three subunit proteins of a putative cytochrome reductase complex. Biochim Biophys Acta 1503279–290 [CrossRef]
    [Google Scholar]
  29. Sone N, Fukuda M, Katayama S, Jyoudai A, Syugyou M, Noguchi S, Sakamoto J. 2003; qcrCAB operon of a nocardia-form actinomycete Rhodococcus rhodochrous encodes cytochrome reductases complex with diheme cytochrome cc subunit. Biochim Biophys Acta 1557125–131 [CrossRef]
    [Google Scholar]
  30. Thony-Meyer L. 1997; Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61:337–376
    [Google Scholar]
  31. Wang K, Zhen Y, Sadoski R, Grinnell S, Geren L, Ferguson-Miller S, Durham B, Millett F. 1999; Definition of the interaction domain for cytochrome c on cytochrome c oxidase. II. Rapid kinetic analysis of electron transfer from cytochrome c to Rhodobacter sphaeroides cytochrome oxidase surface mutants. J Biol Chem 274:38042–38050 [CrossRef]
    [Google Scholar]
  32. Weinstein E. A, Yano T, Li L.-S. & 7 other authors; 2005; Inhibitors of type II NADH : menaquinone oxidoreductase represent a class of antitubercular drugs. Proc Natl Acad Sci U S A 102:4548–4553 [CrossRef]
    [Google Scholar]
  33. Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B. 1998; Cytochrome c binding site on cytochrome oxidase in Paracoccus denitrificans . Eur J Biochem 251:367–373 [CrossRef]
    [Google Scholar]
  34. Zhen Y, Hoganson C. W, Babcock G. T, Ferguson-Miller S. 1999; Definition of the interaction domain for cytochrome c on cytochrome c oxidase. I. Biochemical, spectral, and kinetic characterization of surface mutants in subunit II of Rhodobacter sphaeroides cytochrome aa [sub]3[/sub]. J Biol Chem 274:38032–38041 [CrossRef]
    [Google Scholar]
  35. Zhu W, Arceneaux J. E. L, Beggs M. L, Byers B. R, Eisenach K. D, Lundrigan M. D. 1998; Exochelin genes in Mycobacterium smegmatis : identification of an ABC transporter and two non-ribosomal peptide synthetase genes. Mol Microbiol 29:629–639 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28723-0
Loading
/content/journal/micro/10.1099/mic.0.28723-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error