1887

Abstract

A strain deficient in both its major proteases, intracellular (ClpP) and extracellular (HtrA), was constructed and characterized. This strain, hereafter called , could be obtained only by conjugation between a donor strain and an recipient strain in the NZ9000 context, allowing heterologous gene expression under the control of the NICE (nisin-controlled expression) system. The double mutant showed both higher stress tolerance (e.g. high temperature and ethanol resistance) and higher viability than single or mutant strains. In addition, the secretion rate of two heterologous proteins (staphylococcal nuclease Nuc and Nuc-E7) was also higher in than in the wild-type strain. This strain should be a useful host for high-level production and quality of stable heterologous proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28698-0
2006-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2611.html?itemId=/content/journal/micro/10.1099/mic.0.28698-0&mimeType=html&fmt=ahah

References

  1. Baird, L. & Georgopoulos, C. ( 1990; ). Identification, cloning, and characterization of the Escherichia coli sohA gene, a suppressor of the HtrA (DegP) null phenotype. J Bacteriol 172, 1587–1594.
    [Google Scholar]
  2. Baird, L., Lipinska, B., Raina, S. & Georgopoulos, C. ( 1991; ). Identification of the Escherichia coli sohB gene, a multicopy suppressor of the HtrA (DegP) null phenotype. J Bacteriol 173, 5763–5770.
    [Google Scholar]
  3. Bermúdez-Humarán, L. G., Langella, P., Miyoshi, A., Gruss, A., Guerra, R. T., Montes de Oca-Luna, R. & Le Loir, Y. ( 2002; ). Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68, 917–922.[CrossRef]
    [Google Scholar]
  4. Bermúdez-Humarán, L. G., Langella, P., Commissaire, J., Gilbert, S., Le Loir, Y., L'Haridon, R. & Corthier, G. ( 2003a; ). Controlled intra or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224, 307–313.[CrossRef]
    [Google Scholar]
  5. Bermúdez-Humarán, L. G., Cortes-Perez, N. G., Le Loir, Y., Gruss, A., Rodriguez-Padilla, C., Saucedo-Cardenas, O., Langella, P., Montes de Oca-Luna, R. ( 2003b; ). Fusion to a carrier protein and a synthetic propeptide enhances E7 HPV-16 production and secretion in Lactococcus lactis. Biotechnol Prog 19, 1101–1104.[CrossRef]
    [Google Scholar]
  6. Delorme, C., Godon, J. J., Ehrlich, S. D. & Renault, P. ( 1993; ). Gene inactivation in Lactococcus lactis: histidine biosynthesis. J Bacteriol 175, 4391–4399.
    [Google Scholar]
  7. Foucaud-Scheunemann, C. & Poquet, I. ( 2003; ). HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiol Lett 224, 53–59.[CrossRef]
    [Google Scholar]
  8. Frees, D. & Ingmer, H. ( 1999; ). ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol 31, 79–87.[CrossRef]
    [Google Scholar]
  9. Frees, D., Varmanen, P. & Ingmer, H. ( 2001; ). Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol 41, 93–103.[CrossRef]
    [Google Scholar]
  10. Gasson, M. J. ( 1983; ). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic acid streptococci after protoplast-induced curing. J Bacteriol 154, 1–9.
    [Google Scholar]
  11. Heins, J., Suniano, J., Taniuchi, H. & Anfinsen, C. ( 1967; ). Characterization of a nuclease produced by Staphylococcus aureus. J Biol Chem 242, 1016–1020.
    [Google Scholar]
  12. Kuipers, O. P., de Ruyter, P. J., Kleerebezem, M. & de Vos, W. M. ( 1998; ). Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64, 15–21.[CrossRef]
    [Google Scholar]
  13. Langella, P. & Chopin, A. ( 1989; ). Conjugal transfer of plasmid pIP501 from Lactococcus lactis to Lactobacillus delbruckii subsp. bulgaricus and Lactobacillus helveticus. FEMS Microbiol Lett 51, 149–152.
    [Google Scholar]
  14. Langella, P., Le Loir, Y., Ehrlich, S. D. & Gruss, A. ( 1993; ). Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis. J Bacteriol 175, 5806–5813.
    [Google Scholar]
  15. Le Loir, Y., Gruss, A., Ehrlich, S. D. & Langella, P. ( 1998; ). A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 180, 1895–1903.
    [Google Scholar]
  16. Le Loir, Y., Azevedo, V., Oliveira, S. C. & 12 other authors ( 2005; ). Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4, 2.[CrossRef]
    [Google Scholar]
  17. Madsen, S. M., Albrechtsen, B., Hansen, E. B. & Israelsen, H. ( 1996; ). Cloning and transcriptional analysis of two threonine biosynthetic genes from Lactococcus lactis MG1614. J Bacteriol 178, 3689–3694.
    [Google Scholar]
  18. Maguin, E., Duwat, P., Hege, T., Ehrlich, D. & Gruss, A. ( 1992; ). New thermosensitive plasmid for gram-positive bacteria. J Bacteriol 174, 5633–5638.
    [Google Scholar]
  19. Miyoshi, A., Poquet, I., Azevedo, V. & 7 other authors ( 2002; ). Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 68, 3141–3146.[CrossRef]
    [Google Scholar]
  20. Poquet, I., Saint, V., Seznec, E., Simoes, N., Bolotin, A. & Gruss, A. ( 2000; ). HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35, 1042–1051.[CrossRef]
    [Google Scholar]
  21. Rigoulay, C., Poquet, I., Madsen, S. M. & Gruss, A. ( 2004; ). Expression of the Staphylococcus aureus surface proteins HtrA1 and HtrA2 in Lactococcus lactis. FEMS Microbiol Lett 237, 279–288.
    [Google Scholar]
  22. van Asseldonk, M., Rutten, G., Oteman, M., Siezen, R. J., de Vos, W. M. & Simons, G. ( 1990; ). Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95, 155–160.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28698-0
Loading
/content/journal/micro/10.1099/mic.0.28698-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error