1887

Abstract

5-Methyl cytosine (m5C) was detected in genomic DNA of the enteric pathogen by HPLC analysis and immunoblotting with m5C-specific antibody. Although cleavage with the restriction endonuclease RII revealed the absence of a Dcm homologue in , analysis of the genome sequence indicated the presence of a gene, designated in this study as , which encodes a DNA (cytosine-5-)-methyltransferase (m5C-MTase) designated M.Vch. M.Vch is not associated with a restriction endonuclease or a mismatch very short patch repair (Vsr)-like endonuclease and is hence an ‘orphan’ or solitary MTase, although analysis of a phylogenetic tree indicated that related cytosine MTases are all components of restriction-modification systems. M.Vch recognizes and methylates the first 5′ C in the degenerate sequence 5′-RCCGGY-3′. RT-PCR analysis suggested that gene expression is increased during the stationary phase of growth. During stationary phase, the spontaneous mutation frequency in the wild-type strain was significantly higher than in the corresponding mutant strain, suggesting that the presence of M.Vch and the absence of a very short patch (VSP) repair-like system imposes upon a mutator phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28624-0
2006-04-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/1055.html?itemId=/content/journal/micro/10.1099/mic.0.28624-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 1989; ). Current Protocols in Molecular Biology. New York: Wiley.
  2. Bera, T. K., Ghosh, S. K. & Das, J. ( 1989; ). Cloning and characterization of mutL and mutS genes of Vibrio cholerae: nucleotide sequence of the mutL gene. Nucleic Acids Res 17, 6241–6251.[CrossRef]
    [Google Scholar]
  3. Bhagwat, A. S. & Lieb, M. ( 2002; ). Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli. Mol Microbiol 44, 1421–1428.[CrossRef]
    [Google Scholar]
  4. Bhakat, K. K., Sharma, S. & Das, J. ( 1999; ). The mutK gene of Vibrio cholerae: a new gene involved in DNA mismatch repair. J Bacteriol 18, 879–883.
    [Google Scholar]
  5. Donnenberg, M. S. & Kaper, J. B. ( 1991; ). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive selection suicide vector. Infect Immun 59, 4310–4317.
    [Google Scholar]
  6. Egan, E. S. & Waldor, M. K. ( 2003; ). Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell 114, 521–530.[CrossRef]
    [Google Scholar]
  7. Eick, D., Fritz, H. & Doerfler, W. ( 1983; ). Quantitative determination of 5-methyl cytosine in DNA by reverse-phase high-performance liquid chromatography. Anal Biochem 135, 165–171.[CrossRef]
    [Google Scholar]
  8. Jeltsch, A. ( 2002; ). Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3, 274–293.[CrossRef]
    [Google Scholar]
  9. Julio, S. M., Heithoff, D. M., Provenzano, D., Klose, K. E., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. ( 2001; ). DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect Immun 69, 7610–7615.[CrossRef]
    [Google Scholar]
  10. Kaper, J. B., Morris, J. G. & Levine, M. M. ( 1995; ). Cholera. Clin Microbiol Rev 8, 48–86.
    [Google Scholar]
  11. Kumar, S., Cheng, X., Klimasauskas, S., Mi, S., Posfai, J., Roberts, R. J. & Wilson, G. G. ( 1994; ). The DNA (cytosine-5) methyl transferases. Nucleic Acids Res 22, 1–10.[CrossRef]
    [Google Scholar]
  12. Kwiatek, A., Kobes, M., Olejnik, K. & Piekarowicz, A. ( 2004; ). DNA methyl transferases from Neisseria meningitidis and Neisseria gonorrhoeae FA1090 associated with mismatch nicking endonucleases. Microbiology 150, 1713–1722.[CrossRef]
    [Google Scholar]
  13. Marks, P., McGeehan, J., Wilson, G., Errington, N. & Kneale, G. ( 2003; ). Purification and characterization of a novel DNA methyltransferase, M.Ahd1. Nucleic Acids Res 31, 2803–2810.[CrossRef]
    [Google Scholar]
  14. Messer, W. & Noyer-Weidner, M. ( 1988; ). Timing and targeting the biological functions of Dam methylation in E. coli. Cell 54, 735–737.[CrossRef]
    [Google Scholar]
  15. Raleigh, E. A. & Wilson, G. ( 1986; ). Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc Natl Acad Sci U S A 83, 9070–9074.[CrossRef]
    [Google Scholar]
  16. Reisenauer, A., Kahng, L. S., McCollum, S. & Shapiro, L. ( 1999; ). Bacterial DNA methylation: a cell cycle regulator. J Bacteriol 181, 5135–5139.
    [Google Scholar]
  17. Roberts, R. J., Vincze, T., Posfai, J. & Macelis, D. ( 2005; ). REBASE – restriction enzymes and DNA methyltransferases. Nucleic Acids Res 33, D230–D232.[CrossRef]
    [Google Scholar]
  18. Sohail, A., Lieb, M., Dar, M. & Bhagwat, A. S. ( 1990; ). A gene required for very short patch repair in Escherichia coli is adjacent to the DNA cytosine methylase gene. J Bacteriol 172, 4214–4221.
    [Google Scholar]
  19. Takahashi, N., Naito, Y., Handa, N. & Kobayashi, I. ( 2002; ). A DNA methyl transferase can protect the genome from post-disturbance attack by a restriction-modification gene complex. J Bacteriol 184, 6100–6108.[CrossRef]
    [Google Scholar]
  20. Wilson, G. G. ( 1992; ). Amino acid sequence arrangements of DNA methyl transferases. Methods Enzymol 216, 259.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28624-0
Loading
/content/journal/micro/10.1099/mic.0.28624-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error