1887

Abstract

Rifamycin B biosynthesis by S699 involves a number of unusual modification reactions in the formation of the unique polyketide backbone and decoration of the molecule. A number of genes believed to be involved in the tailoring of rifamycin B were investigated and the results confirmed that the formation of the naphthalene ring moiety of rifamycin takes place during the polyketide chain extension and is catalysed by Rif-Orf19, a 3-(3-hydroxyphenyl)propionate hydroxylase-like protein. The cytochrome P450-dependent monooxygenase encoded by is required for the conversion of the Δ12, 29 olefinic bond in the polyketide backbone of rifamycin W into the ketal moiety of rifamycin B. Furthermore, Rif-Orf3 may be involved in the regulation of rifamycin B production, as its knock-out mutant produced about 40 % more rifamycin B than the wild-type. The work also revealed that many of the genes located in the cluster are not involved in rifamycin biosynthesis, but might be evolutionary remnants carried over from an ancestral lineage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28138-0
2005-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512515.html?itemId=/content/journal/micro/10.1099/mic.0.28138-0&mimeType=html&fmt=ahah

References

  1. Admiraal, S. J., Walsh, C. T. & Khosla, C. ( 2001; ). The loading module of rifamycin synthetase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates. Biochemistry 40, 6116–6123.[CrossRef]
    [Google Scholar]
  2. Admiraal, S. J., Khosla, C. & Walsh, C. T. ( 2002; ). The loading and initial elongation modules of rifamycin synthetase collaborate to produce mixed aryl ketide products. Biochemistry 41, 5313–5324.[CrossRef]
    [Google Scholar]
  3. Arai, H., Yamamoto, T., Ohishi, T., Shimizu, T., Nakata, T. & Kudo, T. ( 1999; ). Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441. Microbiology 145, 2813–2820.
    [Google Scholar]
  4. August, P. R., Tang, L., Yoon, Y. J. & 9 other authors ( 1998; ). Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5, 69–79.[CrossRef]
    [Google Scholar]
  5. Barnes, M. R., Duetz, W. A. & Williams, P. A. ( 1997; ). A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon. J Bacteriol 179, 6145–6153.
    [Google Scholar]
  6. Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A. & 14 other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  7. Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A. & Darst, S. A. ( 2001; ). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912.[CrossRef]
    [Google Scholar]
  8. Cheng, Y. Q., Tang, G. L. & Shen, B. ( 2003; ). Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc Natl Acad Sci U S A 100, 3149–3154.[CrossRef]
    [Google Scholar]
  9. Cricchio, R., Lancini, G., Tamborini, G. & Sensi, P. ( 1974; ). Oximes of 3-formylrifamycin SV. Synthesis, antibacterial activity, and other biological properties. J Med Chem 17, 396–403.[CrossRef]
    [Google Scholar]
  10. Cricchio, R., Arioli, V. & Lancini, G. C. ( 1975; ). Hydrazones of 3-formylrifamycin SV. I – Hydrazones with N-amino-N′-substituted piperazines: synthesis, antibacterial activity and other biological properties. Farmaco [Sci] 30, 607–619.
    [Google Scholar]
  11. Du, L., Sanchez, C., Chen, M., Edwards, D. J. & Shen, B. ( 2000; ). The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem Biol 7, 623–642.[CrossRef]
    [Google Scholar]
  12. Dye, C., Williams, B. G., Espinal, M. A. & Raviglione, M. C. ( 2002; ). Erasing the world's slow stain: strategies to beat multidrug-resistant tuberculosis. Science 295, 2042–2046.[CrossRef]
    [Google Scholar]
  13. Enroth, C., Neujahr, H., Schneider, G. & Lindqvist, Y. ( 1998; ). The crystal structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis. Structure 6, 605–617.[CrossRef]
    [Google Scholar]
  14. Eppink, M. H., Schreuder, H. A. & Van Berkel, W. J. ( 1997; ). Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Sci 6, 2454–2458.
    [Google Scholar]
  15. Floss, H. G. & Yu, T.-W. ( 1999; ). Lessons from the rifamycin biosynthetic gene cluster. Curr Opin Chem Biol 3, 592–597.[CrossRef]
    [Google Scholar]
  16. Floss, H. G. & Yu, T.-W. ( 2005; ). Rifamycin – mode of action, resistance and biosynthesis. Chem Rev 105, 621–632.[CrossRef]
    [Google Scholar]
  17. Gaitatzis, N., Silakowski, B., Kunze, B., Nordsiek, G., Blocker, H., Hofle, G. & Muller, R. ( 2002; ). The biosynthesis of the aromatic myxobacterial electron transport inhibitor stigmatellin is directed by a novel type of modular polyketide synthase. J Biol Chem 277, 13082–13090.[CrossRef]
    [Google Scholar]
  18. Ghisalba, O. & Nuesch, J. ( 1981; ). A genetic approach to the biosynthesis of the rifamycin-chromophore in Nocardia mediterranei. IV. Identification of 3-amino-5-hydroxybenzoic acid as a direct precursor of the seven-carbon amino starter-unit. J Antibiot 34, 64–71.[CrossRef]
    [Google Scholar]
  19. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich: John Innes Foundation.
  20. Kim, C. G., Yu, T.-W., Fryhle, C. B., Handa, S. & Floss, H. G. ( 1998; ). 3-Amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7N units in rifamycin and related antibiotics. J Biol Chem 273, 6030–6040.[CrossRef]
    [Google Scholar]
  21. Kirschbaum, T. M. & Gotte, R. F. ( 1993; ). Rifampicin resistance of Mu lysogenic strains by rpoB mutations. Biol Chem Hoppe-Seyler 374, 657–664.[CrossRef]
    [Google Scholar]
  22. Kishi, T., Harada, S., Asai, M., Muroi, M. & Mizuno, K. ( 1969; ). Tolypomycin. II. Structures of tolyposamine and tolypomycin Y. Tetrahedron Lett 2, 97–100.
    [Google Scholar]
  23. Kishi, T., Yamana, H., Muroi, M., Harada, S. & Asai, M. ( 1972; ). Tolypomycin, a new antibiotic. 3. Isolation and characterization of tolypomycin Y. J Antibiot 25, 11–15.[CrossRef]
    [Google Scholar]
  24. Kumar, C. V., Coque, J. R. & Martin, J. F. ( 1994; ). Efficient transformation of the cephamycin C producer Nocardia lactamdurans and development of shuttle and promoter-probe cloning vectors. Appl Environ Microbiol 60, 4086–4093.
    [Google Scholar]
  25. Kumar, V., de la Fuente, J. L., Leitao, A. L., Liras, P. & Martin, J. F. ( 1996; ). Effect of amplification or targeted disruption of the beta-lactamase gene of Nocardia lactamdurans on cephamycin biosynthesis. Appl Microbiol Biotechnol 45, 621–628.[CrossRef]
    [Google Scholar]
  26. Maggi, N., Pallanza, R. & Sensi, P. ( 1965; ). New derivatives of rifamycin SV. Antimicrobial Agents Chemother 5, 765–769.
    [Google Scholar]
  27. Maggi, N., Pasqualucci, C. R., Ballotta, R. & Sensi, P. ( 1966; ). Rifampicin: a new orally active rifamycin. Chemotherapy 11, 285–292.[CrossRef]
    [Google Scholar]
  28. Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C. & 24 other authors ( 2003; ). cdd: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31, 383–387.[CrossRef]
    [Google Scholar]
  29. Nakata, M., Akiyama, N., Kamata, J., Kojima, K., Masuda, H., Kinoshita, M. & Tatsuta, K. ( 1990; ). The total synthesis of rifamycin W. Tetrahedron 46, 4629–4652.[CrossRef]
    [Google Scholar]
  30. Omer, C. A., Lenstra, R., Litle, P. J., Dean, C., Tepperman, J. M., Leto, K. J., Romesser, J. A. & O'Keefe, D. P. ( 1990; ). Genes for two herbicide-inducible cytochromes P-450 from Streptomyces griseolus. J Bacteriol 172, 3335–3345.
    [Google Scholar]
  31. Piel, J. ( 2002; ). A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci U S A 99, 14002–14007.[CrossRef]
    [Google Scholar]
  32. Ralston, L., Kwon, S. T., Schoenbeck, M., Ralston, J., Schenk, D. J., Coates, R. M. & Chappell, J. ( 2001; ). Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393, 222–235.[CrossRef]
    [Google Scholar]
  33. Ramos-e-Silva, M. & Rebello, P. F. ( 2001; ). Leprosy. Recognition and treatment. Am J Clin Dermatol 2, 203–211.[CrossRef]
    [Google Scholar]
  34. Rascher, A., Hu, Z., Viswanathan, N., Schirmer, A., Reid, R., Nierman, W. C., Lewis, M. & Hutchinson, C. R. ( 2003; ). Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett 218, 223–230.[CrossRef]
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Schupp, T., Toupet, C., Engel, N. & Goff, S. ( 1998; ). Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei. FEMS Microbiol Lett 159, 201–207.[CrossRef]
    [Google Scholar]
  37. Sepkowitz, K. A., Raffalli, J., Riley, L., Kiehn, T. E. & Armstrong, D. ( 1995; ). Tuberculosis in the AIDS era. Clin Microbiol Rev 8, 180–199.
    [Google Scholar]
  38. Stratmann, A., Toupet, C., Schilling, W., Traber, R., Oberer, L. & Schupp, T. ( 1999; ). Intermediates of rifamycin polyketide synthase produced by an Amycolatopsis mediterranei mutant with inactivated rifF gene. Microbiology 145, 3365–3375.
    [Google Scholar]
  39. Suzuki, Y., Katsukawa, C., Inoue, K., Yin, Y., Tasaka, H., Ueba, N. & Makino, M. ( 1995; ). Mutations in rpoB gene of rifampicin resistant clinical isolates of Mycobacterium tuberculosis in Japan. Kansenshogaku Zasshi 69, 413–419.[CrossRef]
    [Google Scholar]
  40. Trower, M. K., Lenstra, R., Omer, C., Buchholz, S. E. & Sariaslani, F. S. ( 1992; ). Cloning, nucleotide sequence determination and expression of the genes encoding cytochrome P-450soy (soyC) and ferredoxinsoy (soyB) from Streptomyces griseus. Mol Microbiol 6, 2125–2134.[CrossRef]
    [Google Scholar]
  41. Tuteja, D., Dua, M., Khanna, R., Dhingra, N., Khanna, M., Kaur, H., Saxena, D. M. & Lal, R. ( 2000; ). The importance of homologous recombination in the generation of large deletions in hybrid plasmids in Amycolatopsis mediterranei. Plasmid 43, 1–11.[CrossRef]
    [Google Scholar]
  42. Weber, J. M., Leung, J. O., Swanson, S. J., Idler, K. B. & McAlpine, J. B. ( 1991; ). An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science 252, 114–117.[CrossRef]
    [Google Scholar]
  43. Wehrli, W. & Staehelin, M. ( 1969; ). The rifamycins – relation of chemical structure and action on RNA polymerase. Biochim Biophys Acta 182, 24–29.[CrossRef]
    [Google Scholar]
  44. Wehrli, W., Zimmermann, W., Kump, W., Tosch, W., Vischer, W. & Zak, O. ( 1987; ). CGP 4832, a new semisynthetic rifamycin derivative highly active against some gram-negative bacteria. J Antibiot (Tokyo) 40, 1733–1739.[CrossRef]
    [Google Scholar]
  45. Weinig, S., Hecht, H. J., Mahmud, T. & Muller, R. ( 2003; ). Melithiazol biosynthesis: further insights into myxobacterial PKS/NRPS systems and evidence for a new subclass of methyl transferases. Chem Biol 10, 939–952.[CrossRef]
    [Google Scholar]
  46. White, R. J., Martinelli, E. & Lancini, G. ( 1974; ). Ansamycin biogenesis: studies on a novel rifamycin isolated from a mutant strain of Nocardia mediterranei. Proc Natl Acad Sci U S A 71, 3260–3264.[CrossRef]
    [Google Scholar]
  47. Xiong, Y., Wu, X. & Mahmud, T. ( 2005; ). A homolog of Mycobacterium tuberculosis PapA5 protein, Rif-Orf20, is an acetyltransferase involved in the biosynthesis of antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. ChemBioChem 6, 834–837.[CrossRef]
    [Google Scholar]
  48. Xu, J., Mahmud, T. & Floss, H. G. ( 2003; ). Isolation and characterization of 27-O-demethylrifamycin SV methyltransferase provides new insights into the post-PKS modification steps during the biosynthesis of the antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. Arch Biochem Biophys 411, 277–288.[CrossRef]
    [Google Scholar]
  49. Yu, T.-W., Shen, Y., Doi-Katayama, Y., Tang, L., Park, C., Moore, B. S., Richard Hutchinson, C. & Floss, H. G. ( 1999; ). Direct evidence that the rifamycin polyketide synthase assembles polyketide chains processively. Proc Natl Acad Sci U S A 96, 9051–9056.[CrossRef]
    [Google Scholar]
  50. Yu, T.-W., Muller, R., Muller, M., Zhang, X., Draeger, G., Kim, C. G., Leistner, E. & Floss, H. G. ( 2001; ). Mutational analysis and reconstituted expression of the biosynthetic genes involved in the formation of 3-amino-5-hydroxybenzoic acid, the starter unit of rifamycin biosynthesis in Amycolatopsis mediterranei S699. J Biol Chem 276, 12546–12555.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28138-0
Loading
/content/journal/micro/10.1099/mic.0.28138-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error