1887

Abstract

The outer-membrane protein OmpW of was studied with respect to its structure, functional properties and regulation of expression. On SDS-PAGE, the membrane-associated form of OmpW protein (solubilized by either 0·1 % or 2 % SDS at 25 °C) migrated as a monomer of 19 kDa that changed to 21 kDa on boiling. The protein was hyperexpressed in in the histidine-tagged form and the purified His-OmpW (heated or unheated) migrated as a 23 kDa protein on SDS-PAGE. Circular dichroism and Fourier-transform infrared spectroscopic analyses of the recombinant protein showed the presence of -structures (∼40 %) with minor amounts (8–15 %) of -helix. These results were consistent with those obtained by computational analysis of the sequence data of the protein using the secondary structure prediction program Jnet. The recombinant protein did not exhibit any porin-like property in a liposome-swelling assay. An antiserum to the purified protein induced a moderate level (66·6 % and 33·3 % at 1 : 50 and 1 : 100 dilutions, respectively) of passive protection against live vibrio challenge in a suckling mouse model. OmpW-deficient mutants of strains were generated by insertion mutagenesis. In a competitive assay in mice, the intestinal colonization activities of these mutants were found to be either only marginally diminished (for O1 strains) or 10-fold less (for an O139 strain) as compared to those of the corresponding wild-type strains. The OmpW protein was expressed as well as in liquid culture medium devoid of glucose. Interestingly, the glucose-dependent regulation of OmpW expression was less prominent in a ToxR mutant of . Further, the expression of OmpW protein was found to be dependent on cultural conditions such as temperature, salinity, and availability of nutrients or oxygen. These results suggest that the modulation of OmpW expression by environmental factors may be linked to the adaptive response of the organism under stress conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27995-0
2005-09-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1512975.html?itemId=/content/journal/micro/10.1099/mic.0.27995-0&mimeType=html&fmt=ahah

References

  1. Baldermann, C. & Engelhardt, H. ( 2000; ). Expression, two-dimensional crystalisation and three-dimensional reconstruction of β8-outer membrane protein Omp21 form Comamonas acidovorans. J Struct Biol 131, 96–107.[CrossRef]
    [Google Scholar]
  2. Baldermann, C., Lupas, A., Lubieniecki, J. & Engelhardt, H. ( 1998; ). The regulated outer membrane protein Omp21 from Comamonas acidovorans is identified as a member of a new family of eight-stranded β-sheet proteins by its sequence and properties. J Bacteriol 180, 3741–3749.
    [Google Scholar]
  3. Beher, M. G., Schnaitman, C. A. & Pugsley, A. P. ( 1980; ). Major heat-modifiable outer membrane protein in gram-negative bacteria: comparison with the OmpA protein of Escherichia coli. J Bacteriol 143, 906–913.
    [Google Scholar]
  4. Bina, J., Zhu, J., Dziejman, M., Faruque, S., Calderwood, S. & Mekelanos, J. ( 2003; ). ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc Natl Acad Sci U S A 100, 2801–2806.[CrossRef]
    [Google Scholar]
  5. Bohm, G., Muhr, R. & Jaenicke, R. ( 1992; ). Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5, 191–195.[CrossRef]
    [Google Scholar]
  6. Borck, K., Beggs, J. D., Brammar, W. J., Hopkins, A. S. & Murray, N. E. ( 1976; ). The construction in vitro of transducing derivatives of phage lambda. Mol Gen Genet 146, 199–203.[CrossRef]
    [Google Scholar]
  7. Buchanan, S. K. ( 1999; ). β-barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol 9, 455–461.[CrossRef]
    [Google Scholar]
  8. Bullock, W. O., Fernandez, J. M. & Short, J. M. ( 1987; ). XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta galactosidase selection. Biotechniques 5, 376–380.
    [Google Scholar]
  9. Carroll, P. A., Tashima, K. T., Rogers, M. B., DiRita, V. J. & Calderwood, S. B. ( 1997; ). Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. Mol Microbiol 25, 1099–1111.[CrossRef]
    [Google Scholar]
  10. Chakrabarty, S. R., Chaudhuri, K., Sen, K. & Das, J. ( 1996; ). Porins of Vibrio cholerae: purification and characterization of OmpU. J Bacteriol 178, 524–530.
    [Google Scholar]
  11. Champion, G. A., Neely, M. N., Brennan, M. A. & DiRita, V. J. ( 1997; ). A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains. Mol Microbiol 23, 323–331.[CrossRef]
    [Google Scholar]
  12. Cuff, J. A. & Barton, G. J. ( 2000; ). Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40, 502–511.[CrossRef]
    [Google Scholar]
  13. Das, M., Chopra, A. K., Cantu, J. M. & Peterson, J. W. ( 1998; ). Antisera to selected outer membrane proteins of Vibrio cholerae protect against challenge with homologous and heterologous strains of V. cholerae. FEMS Immunol Med Microbiol 22, 303–308.[CrossRef]
    [Google Scholar]
  14. DiRita, V. J. ( 1992; ). Co-ordinate expression of virulence genes by ToxR in Vibrio cholerae. Mol Microbiol 6, 451–458.[CrossRef]
    [Google Scholar]
  15. Dong, A., Matsuura, J., Allison, S. D., Chrisman, E., Manning, M. C. & Carpenter, J. F. ( 1996; ). Infrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B. Biochemistry 35, 1450–1457.[CrossRef]
    [Google Scholar]
  16. Filip, C., Fletcher, G., Wulff, J. L. & Earhart, C. F. ( 1973; ). Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 115, 717–722.
    [Google Scholar]
  17. Goldberg, M. B., DiRita, V. J. & Calderwood, S. B. ( 1990; ). Identification of an iron-regulated virulence determinant in Vibrio cholerae, using TnphoA mutagenesis. Infect Immun 58, 55–60.
    [Google Scholar]
  18. Greenfield, N. & Fasman, G. D. ( 1969; ). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116.[CrossRef]
    [Google Scholar]
  19. Hase, C. C. & Mekalanos, J. J. ( 1998; ). TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 95, 730–734.[CrossRef]
    [Google Scholar]
  20. Heidelberg, J. F., Eisen, J. A. Nelson, W. C. & 29 other authors ( 2000; ). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.[CrossRef]
    [Google Scholar]
  21. Jalajkumari, M. B. & Manning, P. A. ( 1990; ). Nucleotide sequence of the gene, ompW, encoding a 22-kDa immunogenic outer membrane protein of Vibrio cholerae. Nucleic Acids Res 18, 2180.[CrossRef]
    [Google Scholar]
  22. Kaper, J. B., Morris, J. G., Jr & Levine, M. M. ( 1995; ). Cholera. Clin Microbiol Rev 8, 48–86.
    [Google Scholar]
  23. Karaolis, D. K. R., Johnson, J. A., Bailey, C. C., Boedeker, E. C., Kaper, J. B. & Reeves, P. R. ( 1998; ). A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 95, 3134–3139.[CrossRef]
    [Google Scholar]
  24. Kim, T. J., Bose, N. & Taylor, R. K. ( 2003; ). Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 49, 81–92.[CrossRef]
    [Google Scholar]
  25. Koebnik, R., Locher, K. P. & Gelder, P. V. ( 2000; ). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37, 239–253.[CrossRef]
    [Google Scholar]
  26. Kyte, J. & Doolittle, R. F. ( 1982; ). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132.[CrossRef]
    [Google Scholar]
  27. Lang, H. & Palva, E. T. ( 1993; ). The ompS gene of Vibrio cholerae encodes a growth-phase-dependent maltoporin. Mol Microbiol 10, 891–901.[CrossRef]
    [Google Scholar]
  28. Lang, H., Jonson, G., Holmgren, J. & Palva, E. T. ( 1994; ). The maltose regulon of Vibrio cholerae affects production and secretion of virulence factors. Infect Immun 62, 4781–4788.
    [Google Scholar]
  29. Lerouge, I. & Vanderleyden, J. ( 2002; ). O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 26, 17–47.[CrossRef]
    [Google Scholar]
  30. Li, C. C., Merrell, D. S., Camilli, A. & Kaper, J. B. ( 2002; ). ToxR interferes with CRP-dependent transcriptional activation of ompT in Vibrio cholerae. Mol Microbiol 43, 1577–1589.[CrossRef]
    [Google Scholar]
  31. Lin, J., Huang, S. & Zhang, Q. ( 2002; ). Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect 4, 325–331.[CrossRef]
    [Google Scholar]
  32. Lugtenberg, B. & Alphen, L. V. ( 1983; ). Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta 737, 51–115.[CrossRef]
    [Google Scholar]
  33. Manning, P. A., Bartowsky, E. J., Leavesly, D. I., Hackett, J. A. & Heuzenroeder, M. W. ( 1985; ). Molecular cloning using immune sera of a 22-kDal minor outer membrane protein of Vibrio cholerae. Gene 34, 95–103.[CrossRef]
    [Google Scholar]
  34. Mekalanos, J. J. ( 1983; ). Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35, 253–263.[CrossRef]
    [Google Scholar]
  35. Miller, V. L. & Mekalanos, J. J. ( 1988; ). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170, 2575–2583.
    [Google Scholar]
  36. Mukhopadhyay, S., Nandi, B. & Ghose, A. C. ( 2000; ). Antibodies (IgG) to lipopolysaccharide of Vibrio cholerae O1 mediate protection through inhibition of intestinal adherence and colonisation in a mouse model. FEMS Microbiol Lett 185, 29–35.[CrossRef]
    [Google Scholar]
  37. Nakamura, K. & Mizushima, S. ( 1976; ). Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K-12. J Biochem 80, 1411–1422.
    [Google Scholar]
  38. Nandi, B. ( 2003; ). Characterization, distribution and function of an outer membrane protein OmpW of Vibrio cholerae. PhD thesis, Jadavpur University, Kolkata, India.
  39. Nandi, B., Nandy, R. K., Mukhopadhyay, S., Nair, G. B., Shimada, T. & Ghose, A. C. ( 2000; ). Rapid method for species specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J Clin Microbiol 38, 4145–4151.
    [Google Scholar]
  40. Nandy, R. K., Sengupta, T. K., Mukhopadhyay, S. & Ghose, A. C. ( 1995; ). A comparative study of the properties of Vibrio cholerae O139, O1 and other non-O1 strains. J Med Microbiol 42, 251–257.[CrossRef]
    [Google Scholar]
  41. Nikaido, H. ( 1999; ). Microdermatology: cell surface in the interaction of microbes with the external world. J Bacteriol 181, 4–8.
    [Google Scholar]
  42. Nikaido, H., Nikaido, K. & Haryama, S. ( 1991; ). Identification and characterization of porins in Pseudomonous aeruginosa. J Biol Chem 266, 770–779.
    [Google Scholar]
  43. Pilsl, H., Smajs, D. & Braun, V. ( 1999; ). Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J Bacteriol 181, 3578–3581.
    [Google Scholar]
  44. Provenzano, D. & Klose, K. E. ( 2000; ). Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci U S A 97, 10220–10224.[CrossRef]
    [Google Scholar]
  45. Rawling, E. G., Brinkman, F. S. & Hancock, R. E. ( 1998; ). Roles of the carboxy-terminal half of Pseudomonas aeruginosa major outer membrane protein OprF in cell shape, growth in low-osmolarity medium, and peptidoglycan association. J Bacteriol 180, 3556–3562.
    [Google Scholar]
  46. Reidl, J. & Klose, K. E. ( 2002; ). Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 26, 125–139.[CrossRef]
    [Google Scholar]
  47. Rost, B. & Sander, C. ( 1993; ). Prediction of protein secondary structure at better than 70 % accuracy. J Mol Biol 232, 584–599.[CrossRef]
    [Google Scholar]
  48. Schoolnik, G. K. & Yildiz, F. H. ( 2000; ). The complete genome sequence of Vibrio cholerae: a tale of two chromosomes and of two lifestyles. Genome Biol 1, reviews1016. doi:10.1186/gb-2000-1-3-reviews1016
    [Google Scholar]
  49. Schulz, G. E. ( 2000; ). Beta-barrel membrane proteins. Curr Opin Struct Biol 10, 443–447.[CrossRef]
    [Google Scholar]
  50. Sengupta, D. K., Sengupta, T. K. & Ghose, A. C. ( 1992; ). Major outer membrane proteins of Vibrio cholerae and their role in induction of protective immunity through inhibition of intestinal colonization. Infect Immun 60, 4848–4855.
    [Google Scholar]
  51. Silva, A. J., Pham, K. & Benitez, J. A. ( 2003; ). Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology 149, 1883–1891.[CrossRef]
    [Google Scholar]
  52. Simonet, V. C., Basle, A., Klose, K. E. & Delcour, A. H. ( 2003; ). The Vibrio cholerae porins OmpU and OmpT have distinct channel properties. J Biol Chem 278, 17539–17545.[CrossRef]
    [Google Scholar]
  53. Skorupski, K. & Taylor, R. K. ( 1997; ). Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibrio cholerae. Proc Natl Acad Sci U S A 94, 265–270.[CrossRef]
    [Google Scholar]
  54. Stathopoulos, C. ( 1999; ). Bacterial outer membrane proteins: topological analyses and biotechnological perspectives. Membr Cell Biol 13, 3–21.
    [Google Scholar]
  55. Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. ( 1987; ). Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84, 2833–2837.[CrossRef]
    [Google Scholar]
  56. Waldor, M. K. & Mekalanos, J. J. ( 1996; ). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914.[CrossRef]
    [Google Scholar]
  57. Wang, Y. ( 2002; ). The function of OmpA in Escherichia coli. Biochem Biophys Res Commun 292, 396–401.[CrossRef]
    [Google Scholar]
  58. Wibbenmeyer, J. A., Provenzano, D., Landry, C. F., Klose, K. E. & Delcour, A. H. ( 2002; ). Vibrio cholerae OmpU and OmpT porins are differentially affected by bile. Infect Immun 70, 121–126.[CrossRef]
    [Google Scholar]
  59. Xu, Q., Dziejman, M. & Mekalanos, J. J. ( 2003; ). Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci U S A 100, 1286–1291.[CrossRef]
    [Google Scholar]
  60. Zhai, Y. & Saier, M. H., Jr ( 2002; ). The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes. Protein Sci 11, 2196–2207.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27995-0
Loading
/content/journal/micro/10.1099/mic.0.27995-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error