1887

Abstract

Mass flow of cytoplasm in trunk hyphae was directly confirmed by injecting oil droplets into the hyphae. The droplets move in a manner similar to cytoplasmic particles and vacuoles within the hyphae. The direction of mass flow is towards the growing hyphal tips at the colony edge. Based on flow velocities (about 5 μm s), hyphal radius and estimates of cytoplasm viscosity, the Reynolds number is about 10, indicating that mass flow is laminar. Therefore, the Poiseulle equation can be used to calculate the pressure gradient required for mass flow: 0·0005–0·1 bar cm (depending on the values used for septal pore radius and cytoplasmic viscosity). These values are very small compared to the normal hydrostatic pressure of the hyphae (4–5 bar). Mass flow stops after respiratory inhibition with cyanide, or creation of an extracellular osmotic gradient. The flow is probably caused by internal osmotic gradients created by differential ion transport along the hyphae. Apical cytoplasm migrates at the same rate as tip extension, as do oil droplets injected near the tip. Thus, in addition to organelle positioning mediated by molecular motors, pressure-driven mass flow may be an integral part of hyphal extension.

Keyword(s): BS, buffer solution
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27947-0
2005-08-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512685.html?itemId=/content/journal/micro/10.1099/mic.0.27947-0&mimeType=html&fmt=ahah

References

  1. Alex L. A., Borkovich K. A., Simon M. I. 1996; Hyphal development in Neurospora crassa : involvement of a two-component histidine kinase. Proc Natl Acad Sci U S A93:3416–3421[CrossRef]
    [Google Scholar]
  2. Amir R., Steudle E., Levanon D., Hadar Y., Chet I. 1995; Turgor changes in Morchella esculenta during translocation and sclerotial formation. Exp Mycol19:129–136[CrossRef]
    [Google Scholar]
  3. Berg H. C. 1993; Random Walks in Biology Princeton: Princeton University Press;
    [Google Scholar]
  4. Boudaoud A. 2003; Growth of walled cells: from shells to vesicles. Phys Rev Lett91: 018104 online publication
    [Google Scholar]
  5. Brody J. P., Yager P., Goldstein R. E., Austin R. H. 1996; Biotechnology at low Reynolds number. Biophys J71:3430–3441[CrossRef]
    [Google Scholar]
  6. Emerson S. 1963; Slime, a plasmodioid variant of Neurospora crassa . Genetica34:162–182
    [Google Scholar]
  7. Fushimi K., Verkman A. S. 1991; Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. J Cell Biol112:719–725[CrossRef]
    [Google Scholar]
  8. Gilbert S. P. 2001; High performance fungal motors. Nature414:597–598[CrossRef]
    [Google Scholar]
  9. Heath I. B., Harold R. L. 1992; Actin has multiple roles in the formation and architecture of zoospores of the oomycetes, Saprolegnia ferax and Achlya bisexualis . J Cell Sci102:611–627
    [Google Scholar]
  10. Heath I. B., Steinberg G. 1999; Mechanisms of hyphal tip growth: tube dwelling amebae revisited. Fungal Genet Biol28:79–93[CrossRef]
    [Google Scholar]
  11. Jennings D. H. 1987; Translocation of solutes in fungi. Biol Rev62:215–243
    [Google Scholar]
  12. Lew R. R. 1989; Calcium activates an electrogenic proton pump in Neurospora plasma membrane. Plant Physiol91:213–316[CrossRef]
    [Google Scholar]
  13. Lew R. R. 1996; Pressure regulation of the electrical properties of growing Arabidopsis thaliana L. roothairs. Plant Physiol112:1089–1100[CrossRef]
    [Google Scholar]
  14. Lew R. R. 1999; Comparative analysis of Ca2+ and H+ flux magnitude and location along growing hyphae of Saprolegnia ferax and Neurospora crassa . Eur J Cell Biol78:892–902[CrossRef]
    [Google Scholar]
  15. Lew R. R., Levina N. N. 2004; Oxygen flux magnitude and location along growing hyphae of Neurospora crassa . FEMS Microbiol Lett233:125–130[CrossRef]
    [Google Scholar]
  16. Lew R. R., Levina N. N., Walker S. K., Garrill A. 2004; Turgor regulation in hyphal organisms. Fungal Genet Biol41:1007–1015[CrossRef]
    [Google Scholar]
  17. McCluskey K. 2003; The Fungal Genetics Stock Center: from molds to molecules. Adv Appl Microbiol52:245–262
    [Google Scholar]
  18. Money N. P., Harold F. M. 1993; Two water molds can grow without measurable turgor pressure. Planta190:426–430
    [Google Scholar]
  19. Nobel P. S. 1991; Plants and fluxes. Chapter 9 in Physicochemical and Environmental Plant Physiology pp508–513 San Diego: Academic Press;
    [Google Scholar]
  20. Purcell E. M. 1977; Life at low Reynolds number. Am J Physics45:3–11[CrossRef]
    [Google Scholar]
  21. Schumacher M. M., Enderlin C. S., Selitrennikoff C. P. 1997; The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Curr Microbiol34:340–347[CrossRef]
    [Google Scholar]
  22. Seiler S., Plamann M. 2003; The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa . Mol Biol Cell14:4352–4364[CrossRef]
    [Google Scholar]
  23. Seiler S., Plamann M., Schliwa M. 1999; Kinesin and dyenin mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora . Curr Biol9:779–785[CrossRef]
    [Google Scholar]
  24. Shabala S. N., Lew R. R. 2002; Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol129:290–299[CrossRef]
    [Google Scholar]
  25. Silverman-Gavrila L. B., Lew R. R. 2003; Calcium gradient dependence of Neurospora crassa hyphal growth. Microbiology149:2475–2485[CrossRef]
    [Google Scholar]
  26. Slayman C. L., Long W. S., Lu C. Y. H. 1973; Relationship between ATP and an electrogenic pump in plasma-membrane of Neurospora crassa . J Membr Biol14:305–338[CrossRef]
    [Google Scholar]
  27. Thompson D. W. 1992; On Growth and Form Edited by Bonner J. T.. Cambridge: Cambridge University Press;
    [Google Scholar]
  28. Virag A., Griffiths A. J. F. 2004; A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet Biol41:213–225[CrossRef]
    [Google Scholar]
  29. Vogel H. 1956; A convenient growth medium for Neurospora . Microb Genet Bull13:42–46
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27947-0
Loading
/content/journal/micro/10.1099/mic.0.27947-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error