1887

Abstract

The exopolysaccharide (EPS) biosynthesis gene clusters of four strains consist of chromosomal DNA regions of 18·5 kb encoding 17 ORFs that are highly similar among the strains. However, under identical conditions, EPS production varies considerably among these strains, from 61 to 1611 mg l. Fifteen genes are co-transcribed starting from the first promoter upstream of . Nevertheless, five transcription start sites were identified by 5′-RACE PCR analysis, and these were associated with promoter sequences upstream of , , , and . Six potential glycosyltransferase genes were identified that account for the assembly of the heptasaccharide repeat unit containing an unusually high proportion of rhamnose. Four genes involved in the biosynthesis of the sugar nucleotide precursor dTDP--rhamnose were identified in the EPS biosynthesis locus, which is unusual for lactic acid bacteria. These four genes are expressed from their own promoter (P2), as well as co-transcribed with the upstream EPS genes, resulting in coordinated production of the rhamnose precursor with the enzymes involved in EPS biosynthesis. This is believed to be the first report demonstrating that the sequence, original organization and transcription of genes encoding EPS production are highly similar among four strains of , and do not vary with the amount of EPS produced.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27852-0
2005-06-01
2020-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511839.html?itemId=/content/journal/micro/10.1099/mic.0.27852-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Ausubel F. M. 1995; Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn. New York: Wiley;
    [Google Scholar]
  3. Bateman A., Coin L., Durbin R. & 10 other authors. 2004; The Pfam protein families database. Nucleic Acids Res32:D138–141[CrossRef]
    [Google Scholar]
  4. Bender M. H., Cartee R. T., Yother J. 2003; Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J Bacteriol185:6057–6066[CrossRef]
    [Google Scholar]
  5. Bergmaier D., Champagne C. P., Lacroix C. 2003; Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J Appl Microbiol95:1049–1057[CrossRef]
    [Google Scholar]
  6. Blattner F. R., Plunkett G. III, Bloch C. A.. 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1474[CrossRef]
    [Google Scholar]
  7. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp.lactis IL1403. Genome Res11:731–753[CrossRef]
    [Google Scholar]
  8. Bourgoin F., Pluvinet A., Gintz B., Decaris B., Guedon G. 1999; Are horizontal transfers involved in the evolution of the Streptococcus thermophilus exopolysaccharide synthesis loci?. Gene233:151–161[CrossRef]
    [Google Scholar]
  9. Broadbent J. R., McMahon D. J., Welker D. L., Oberg C. J., Moineau S. 2003; Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci86:407–423[CrossRef]
    [Google Scholar]
  10. Campbell J. A., Davies G. J., Bulone V., Henrissat B. 1997; A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J326:929–939
    [Google Scholar]
  11. Cerning J., Renard C. M. G. C., Thibault J. F., Bouilliane C., Landon M., Desmazeaud M., Topisirovic L. 1994; Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl Environ Microbiol60:3914–3919
    [Google Scholar]
  12. Chabot S., Yu H.-L., De Léséleuc L., Cloutier D., Van Calsteren M.-R., Lessard M., Roy D., Lacroix M., Oth D. 2001; Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-gamma in mouse splenocytes. Lait81:683–697[CrossRef]
    [Google Scholar]
  13. De Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol23:130–135[CrossRef]
    [Google Scholar]
  14. De Vuyst L., Degeest B. 1999; Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev23:153–177[CrossRef]
    [Google Scholar]
  15. De Vuyst L., De Vin F., Vaningelgem F., Degeest B. 2001; Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J11:687–707[CrossRef]
    [Google Scholar]
  16. Dubois M., Gilles K., Hamilton J. K., Rebers P. A., Smith F. 1951; A colorimetric method for the determination of sugars. Nature168:167
    [Google Scholar]
  17. Dupont I., Roy D., LaPointe G. 2000; Comparison of exopolysaccharide production by strains of Lactobacillus rhamnosus and Lactobacillus paracasei grown in chemically defined medium and milk. J Ind Microbiol Biotechnol24:251–255[CrossRef]
    [Google Scholar]
  18. Estrem S. T., Gaal T., Ross W., Gourse R. L. 1998; Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci U S A95:9761–9766[CrossRef]
    [Google Scholar]
  19. Farres J., Caminal G., Lopez-Santin J. 1997; Influence of phosphate on rhamnose-containing exopolysaccharide rheology and production by Klebsiella I-714. Appl Microbiol Biotechnol48:522–527[CrossRef]
    [Google Scholar]
  20. Gaston K., Kolb A., Busby S. 1989; Binding of the Escherichia coli cyclic AMP receptor protein to DNA fragments containing consensus nucleotide sequences. Biochem J261:649–653
    [Google Scholar]
  21. Germond E., Lamothe G., Stingele F. 1999; Lactic acid bacteria producing exopolysaccharides. European Patent WO9962316
    [Google Scholar]
  22. Gosalbes M. J., Monedero V., Alpert C. A., Pérez-Martinez G. 1997; Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett148:83–89[CrossRef]
    [Google Scholar]
  23. Gostick D. O., Green J., Irvine A. S., Gasson M. J., Guest J. R. 1998; A novel regulatory switch mediated by the FNR-like protein of Lactobacillus casei. Microbiology144:705–717[CrossRef]
    [Google Scholar]
  24. Heidelberg J. F., Seshadri R., Haveman S. A.. 32 other authors 2004; The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol22:554–559[CrossRef]
    [Google Scholar]
  25. Henkin T. M. 1996; The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol Lett135:9–15[CrossRef]
    [Google Scholar]
  26. Hosono A., Lee J., Ametani A., Natsume M., Hirayama M., Adachi T., Kaminogawa S. 1997; Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotechnol Biochem61:312–316[CrossRef]
    [Google Scholar]
  27. Iannelli F., Pearce B. J., Pozzi G. 1999; The type 2 capsule locus of Streptococcus pneumoniae. J Bacteriol181:2652–2654
    [Google Scholar]
  28. Johansen E., Kibenich A. 1992; Isolation and characterization of IS1165, an insertion sequence of Leuconostoc mesenteroides subsp.cremoris and other lactic acid bacteria. Plasmid27:200–206[CrossRef]
    [Google Scholar]
  29. Jolly L., Stingele F. 2001; Molecular organization and functionality of exopolysaccharide gene clusters. Int Dairy J11:733–745[CrossRef]
    [Google Scholar]
  30. Jolly L., Newell J., Porcelli I., Vincent S. J., Stingele F. 2002a; Lactobacillus helveticus glycosyltransferases: from genes to carbohydrate synthesis. Glycobiology12:319–327[CrossRef]
    [Google Scholar]
  31. Jolly L., Vincent S. J., Duboc P., Neeser J. R. 2002b; Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek82:367–374[CrossRef]
    [Google Scholar]
  32. Kapitonov D., Yu R. K. 1999; Conserved domains of glycosyltransferases. Glycobiology9:961–978[CrossRef]
    [Google Scholar]
  33. Kido N., Torgov V. I., Sugiyama T., Uchiya K., Sugihara H., Komatsu T., Kato N., Jann K. 1995; Expression of the O9 polysaccharide of Escherichia coli: sequencing of the E. coli O9 rfb gene cluster, characterization of mannosyl transferases, and evidence for an ATP-binding cassette transport system. J Bacteriol177:2178–2187
    [Google Scholar]
  34. Kitazawa H., Toba T., Itoh T., Kumano N., Adachi S., Yamaguchi T. 1991; Antitumoral activity of slime-forming encapsulated Lactococcus lactis subsp.cremoris isolated from Scandinavian ropy sour milk, ‘viili’. Anim Sci Technol62:277–283
    [Google Scholar]
  35. Kleerebezem M., Boekhorst J., van Kranenburg R.. 17 other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A100:1990–1995[CrossRef]
    [Google Scholar]
  36. Lamothe G. T., Jolly L., Mollet B., Stingele F. 2002; Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp.bulgaricus. Arch Microbiol178:218–228[CrossRef]
    [Google Scholar]
  37. McCracken A., Turner M. S., Giffard P., Hafner L. M., Timms P. 2000; Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol173:383–389[CrossRef]
    [Google Scholar]
  38. Miller J. H. 1992; A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Morishita T., Deguchi Y., Yajima M., Sakurai T., Yura T. 1981; Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthesis pathways. J Bacteriol148:64–71
    [Google Scholar]
  40. Morona J. K., Morona R., Paton J. C. 1997; Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol23:751–763[CrossRef]
    [Google Scholar]
  41. Morona J. K., Paton J. C., Miller D. C., Morona R. 2000; Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol Microbiol35:1431–1442
    [Google Scholar]
  42. Morona J. K., Morona R., Miller D. C., Paton J. C. 2002; Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol184:577–583[CrossRef]
    [Google Scholar]
  43. Morona J. K., Morona R., Miller D. C., Paton J. C. 2003; Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J Bacteriol185:3009–3019[CrossRef]
    [Google Scholar]
  44. Nakajima H., Hirota T., Toba T., Itoh T., Adachi S. 1992; Structure of the extracellular polysaccharide from slime-forming Lactococcus lactis subsp.cremoris SBT 0495. Carbohydr Res224:245–253[CrossRef]
    [Google Scholar]
  45. Paul F., Morin A., Monsan P. 1986; Microbial polysaccharides with actual potential industrial applications. Biotechnol Adv4:245–259[CrossRef]
    [Google Scholar]
  46. Péant B., LaPointe G. 2004; Identification and characterization of a conserved nuclease secreted by strains of the Lactobacillus casei group. J Appl Microbiol96:367–374[CrossRef]
    [Google Scholar]
  47. Provencher C., LaPointe G., Sirois S., Van Calsteren M. R., Roy D. 2003; Consensus-degenerate hybrid oligonucleotide primers for amplification of priming glycosyltransferase genes of the exopolysaccharide locus in strains of the Lactobacillus casei group. Appl Environ Microbiol69:3299–3307[CrossRef]
    [Google Scholar]
  48. Reeves P. R., Hobbs M., Valvano M. A.. 8 other authors 1996; Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol4:495–503[CrossRef]
    [Google Scholar]
  49. Ricciardi A., Clementi F. 2000; Exopolysaccharides from lactic acid bacteria: structure, production and technological applications. Ital J Food Sci12:23–45
    [Google Scholar]
  50. Roberts I. S. 1996; The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol50:285–315[CrossRef]
    [Google Scholar]
  51. Ruas-Madiedo P., Hugenholtz J., Zoon P. 2002; An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J12:163–171[CrossRef]
    [Google Scholar]
  52. Spiro S., Guest J. R. 1990; FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev6:399–428
    [Google Scholar]
  53. Sriranganathan N., Seidler R. J., Sandine W. E. 1985; Nucleic acids of species of Lactobacillus. J Dairy Sci68:1077–1086[CrossRef]
    [Google Scholar]
  54. Stingele F., Neeser J. R., Mollet B. 1996; Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol178:1680–1690
    [Google Scholar]
  55. Van Calsteren M. R., Pau-Roblot C., Begin A., Roy D. 2002; Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R. Biochem J363:7–17[CrossRef]
    [Google Scholar]
  56. van Kranenburg R., Marugg J. D., van Swam I. I., Willem N. J., de Vos W. M. 1997; Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol24:387–397[CrossRef]
    [Google Scholar]
  57. van Kranenburg R., Boels I. C., Kleerebezem M, de Vos W. M. 1999a; Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr Opin Biotechnol10:498–504[CrossRef]
    [Google Scholar]
  58. van Kranenburg R., Vos H. R., van Swam I. I., Marugg J. D., Kleerebezem M., de Vos W. M. 1999b; Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J Bacteriol181:338–340
    [Google Scholar]
  59. Vincent D., Roy D., Mondou F., Dery C. 1998; Characterization of bifidobacteria by random DNA amplification. Int J Food Microbiol43:185–193[CrossRef]
    [Google Scholar]
  60. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J1:945–951
    [Google Scholar]
  61. Wei J., Goldberg M. B., Burland V. & 14 other authors. 2003; Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun71:2775–2786[CrossRef]
    [Google Scholar]
  62. Weickert M. J., Chambliss G. H. 1990; Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis.. Proc Natl Acad Sci U S A87:6238–6242[CrossRef]
    [Google Scholar]
  63. Xu J., Bjursell M. K., Himrod J., Deng S., Carmichael L. K., Chiang H. C., Hooper L. V., Gordon J. I. 2003; A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science299:2074–2076[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27852-0
Loading
/content/journal/micro/10.1099/mic.0.27852-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error