1887

Abstract

degrades 1,2-propanediol (1,2-PD) by a pathway that requires coenzyme B (adenosylcobalamin; AdoCbl). The genes specifically involved in 1,2-PD utilization () are found in a large contiguous cluster, the locus. Earlier studies have indicated that this locus includes genes for the conversion of vitamin B (cyanocobalamin; CNCbl) to AdoCbl and that the gene encodes an ATP : cob(I)alamin adenosyltransferase which catalyses the terminal step of this process. Here, evidence is presented that the gene encodes a bifunctional cobalamin reductase that catalyses two reductive steps needed for the conversion of CNCbl into AdoCbl. The PduS enzyme was produced in high levels in . Enzyme assays showed that cell extracts from the PduS expression strain reduced cob(III)alamin (hydroxycobalamin) to cob(II)alamin at a rate of 91 nmol min mg and cob(II)alamin to cob(I)alamin at a rate of 7·8 nmol min mg. In contrast, control extracts had only 9·9 nmol min mg cob(III)alamin reductase activity and no detectable cob(II)alamin reductase activity. Thus, these results indicated that the PduS enzyme is a bifunctional cobalamin reductase. Enzyme assays also showed that the PduS enzyme reduced cob(II)alamin to cob(I)alamin for conversion into AdoCbl by purified PduO adenosyltransferase. Moreover, studies in which iodoacetate was used as a chemical trap for cob(I)alamin indicated that the PduS and PduO enzymes physically interact and that cob(I)alamin is sequestered during the conversion of cob(II)alamin to AdoCbl by these two enzymes. This is likely to be important physiologically, since cob(I)alamin is extremely reactive and would need to be protected from unproductive by-reactions. Lastly, bioinformatic analyses showed that the PduS enzyme is unrelated in amino acid sequence to enzymes of known function currently present in GenBank. Hence, results indicate that the PduS enzyme represents a new class of cobalamin reductase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27755-0
2005-04-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511169.html?itemId=/content/journal/micro/10.1099/mic.0.27755-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Ames B. N. 2001; DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res 475:7–20 [CrossRef]
    [Google Scholar]
  4. Banerjee R. V., Harder S. R., Ragsdale S. W., Matthews R. G. 1990; Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry 29:1129–1135 [CrossRef]
    [Google Scholar]
  5. Blanche F., Maton L., Debussche L., Thibaut D. 1992; Purification and characterization of cob(II)yrinic acid a,c-diamide reductase from Pseudomonas denitrificans. J Bacteriol 174:7452–7454
    [Google Scholar]
  6. Bobik T. A., Ailion M. E., Roth J. R. 1992; A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. J Bacteriol 174:2253–2266
    [Google Scholar]
  7. Bobik T. A., Xu Y., Jeter R. M., Otto K. E., Roth J. R. 1997; Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase. J Bacteriol 179:6633–6639
    [Google Scholar]
  8. Bobik T. A., Havemann G. D., Busch R. J., Williams D. S., Aldrich H. C. 1999; The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for the formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation. J Bacteriol 181:5967–5975
    [Google Scholar]
  9. Bork P., Dandekar T., Diaz-Lazcoz Y., Eisenhaber F., Huynen M., Yuan Y. 1998; Predicting function: from genes to genomes and back. J Mol Biol 283:707–725 [CrossRef]
    [Google Scholar]
  10. Brady R. O., Barker H. A. 1961; The enzymatic synthesis of cobamide coenzymes. Biochem Biophys Res Commun 4:464–468 [CrossRef]
    [Google Scholar]
  11. Brady R. O., Castanera E. G., Barker H. A. 1962; The enzymatic synthesis of cobamide coenzymes. J Biol Chem 237:2325–2332
    [Google Scholar]
  12. Chen P., Ailion M., Bobik T., Stormo G., Roth J. 1995; Five promoters integrate control of the cob/pdu regulon in Salmonella typhimurium. J Bacteriol 177:5401–5410
    [Google Scholar]
  13. Conner C. P., Heithoff D. M., Julio S. M., Sinsheimer R. L., Mahan M. J. 1998; Differential patterns of acquired virulence genes distinguish Salmonella strains. Proc Natl Acad Sci U S A 95:4641–4645 [CrossRef]
    [Google Scholar]
  14. Debussche L., Couder M., Thibaut D., Cameron B., Crouzet J., Blanche F. 1991; Purification and partial characterization of cob(I)alamin adenosyltransferase from Pseudomonas denitrificans. J Bacteriol 173:6300–6302
    [Google Scholar]
  15. Dobson C. M., Wai T., Leclerc D., Kadir H., Narang M., Lerner-Ellis J. P., Hudson T. J., Rosenblatt D. S., Gravel R. A. 2002; Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria. Hum Mol Genet 11:3361–3369 [CrossRef]
    [Google Scholar]
  16. Fonseca M. V., Escalante-Semerena J. C. 2000; Reduction of cob(III)alamin to cob(II)alamin inSalmonella enterica serovar Typhimurium LT2. J Bacteriol 182:4304–4309 [CrossRef]
    [Google Scholar]
  17. Fonseca M. V., Escalante-Semerena J. C. 2001; An in vitro system for the enzymic conversion of cobalamin to adenosylcobalamin. J Biol Chem 276:32101–32108 [CrossRef]
    [Google Scholar]
  18. Fujii K., Huennekens F. M. 1974; Activation of methionine synthetase by a reduced triphosphopyridine nucleotide-dependent flavoprotein system. J Biol Chem 249:6745–6753
    [Google Scholar]
  19. Fujii K., Galivan J. H., Huennekens F. M. 1977; Activation of methionine synthase: further characterization of flavoprotein system. Arch Biochem Biophys 178:662–670 [CrossRef]
    [Google Scholar]
  20. Havemann G. D., Bobik T. A. 2003; Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol inSalmonella enterica serovar Typhimurium LT2. J Bacteriol 185:5086–5095 [CrossRef]
    [Google Scholar]
  21. Havemann G. D., Sampson E. M., Bobik T. A. 2002; PduA is a shell protein of polyhedral organelles involved in the coenzyme B12-dependent degradation of 1,2-propanediol inSalmonella enterica serovar Typhimurium LT2. J Bacteriol 184:1253–1261 [CrossRef]
    [Google Scholar]
  22. Heithoff D. M., Conner C. P., Hentschel U., Govantes F., Hanna P. C., Mahan M. J. 1999; Coordinate intracellular expression of Salmonella genes induced during infection. J Bacteriol 181:799–807
    [Google Scholar]
  23. Horswill A. R., Escalante-Semerena J. C. 1997; Propionate catabolism in Salmonella typhimurium LT2: two divergently transcribed units comprise the prp locus at 8·5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes constitute an operon. J Bacteriol 179:928–940
    [Google Scholar]
  24. Huennekens F. M., Vitols K. S., Fujii K., Jacobsen D. W. 1982; Biosynthesis of the cobalamin coenzymes. In B12 pp 145–164 Edited by Dolphin D. New York: Wiley;
    [Google Scholar]
  25. Jeter R. M. 1990; Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium. J Gen Microbiol 136:887–896 [CrossRef]
    [Google Scholar]
  26. Johnson C. L. V., Pechonick E., Park S. D., Havemann G. D., Leal N. A., Bobik T. A. 2001; Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP : cob(I)alamin adenosyltransferase gene. J Bacteriol 183:1577–1584 [CrossRef]
    [Google Scholar]
  27. Leal N. A., Havemann G. D., Bobik T. A. 2003a; PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation bySalmonella enterica serovar Typhimurium LT2. Arch Microbiol 180:353–361 [CrossRef]
    [Google Scholar]
  28. Leal N. A., Park S. D., Kima P. E., Bobik T. A. 2003b; Identification of the human and bovine ATP : cob(I)alamin adenosyltransferase cDNAs based on complementation of a bacterial mutant. J Biol Chem 278:9227–9234 [CrossRef]
    [Google Scholar]
  29. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Obradors N., Badia J., Baldoma L., Aguilar J. 1988; Anaerobic metabolism of the l-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium. J Bacteriol 170:2159–2162
    [Google Scholar]
  32. Olteanu H., Banerjee R. 2003; Redundancy in the pathway for redox regulation of mammalian methionine synthase: reductive activation by the dual flavoprotein, novel reductase 1. J Biol Chem 278:38310–38314 [CrossRef]
    [Google Scholar]
  33. Overbeek R., Fonstein M., D'Souza M., Pusch G. D., Maltsev N. 1999; The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96:2896–2901 [CrossRef]
    [Google Scholar]
  34. Paine M. J., Garner A. P., Powell D., Sibbald J., Sales M., Pratt N., Smith T., Tew D. G., Wolf C. R. 2000; Cloning and characterization of a novel human dual flavin reductase. J Biol Chem 275:1471–1478 [CrossRef]
    [Google Scholar]
  35. Peterkofsky A., Redfield B., Weissbach H. 1961; The role of ATP in the biosynthesis of coenzyme B12. Biochem Biophys Res Commun 5:213–216 [CrossRef]
    [Google Scholar]
  36. Pezacka E. 1993; Identification of and characterization of two enzymes involved in the intracellular metabolism of cobalamin. Cyanocobalamin β-ligand transferase and micosomal cob(III)alamin reductase. Biochim Biophys Acta 1157167–177 [CrossRef]
    [Google Scholar]
  37. Pezacka E., Green R., Jacobsen D. W. 1990; Glutathionylcobalamin as an intermediate in the formation of cobalamin coenzymes. Biochem Biophys Res Commun 169:443–450 [CrossRef]
    [Google Scholar]
  38. Rosenblatt D. S., Fenton W. A. 1999; Inborn errors of cobalamin metabolism. In Chemistry and Biochemistry of B12 pp 367–384 Edited by Banerjee R. New York: Wiley;
    [Google Scholar]
  39. Roth J. R., Lawrence J. G., Bobik T. A. 1996; Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181 [CrossRef]
    [Google Scholar]
  40. Schneider Z. 1987a; Chemistry of cobalamin and related compounds. In Comprehensive B12 pp 17–86 Edited by Schneider Z., Stroinski A. Berlin: Walter de Gruyter;
    [Google Scholar]
  41. Schneider Z. 1987b; Purification and estimation of vitamin B12. In Comprehensive B12 pp 111–155 Edited by Schneider Z., Stroinski A. Berlin: Walter de Gruyter;
    [Google Scholar]
  42. Schneider Z., Stroinski A. (editors) 1987 Comprehensive B12 Berlin: Walter de Gruyter;
    [Google Scholar]
  43. Schrauzer G. N., Deutsch E. 1969; Reactions of cobalt(I) supernucleophiles. The alkylation of vitamin B12s cobaloximes(I), and related compounds. J Am Chem Soc 91:3341–3350 [CrossRef]
    [Google Scholar]
  44. Schrauzer G. N., Deutsch E., Windgassen R. J. 1968; The nucleophilicity of vitamin B12. J Am Chem Soc 90:2441–2442 [CrossRef]
    [Google Scholar]
  45. Suh S., Escalante-Semerena J. C. 1995; Purification and initial characterization of the ATP : corrinoid adenosyltransferase encoded by the cobA gene of Salmonella typhimurium. J Bacteriol 177:921–925
    [Google Scholar]
  46. Toraya T. 2000; Radical catalysis of B12 enzymes: structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases. Cell Mol Life Sci 57:106–127 [CrossRef]
    [Google Scholar]
  47. Toraya T., Mori K. 1999; A reactivating factor for coenzyme B12-dependent diol dehydratase. J Biol Chem 274:3372–3377 [CrossRef]
    [Google Scholar]
  48. Toraya T., Honda S., Fukui S. 1979; Fermentation of 1,2-propanediol and 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase. J Bacteriol 139:39–47
    [Google Scholar]
  49. Toraya T., Kuno S., Fukui S. 1980; Distribution of coenzyme B12-dependent diol dehydratase and glycerol dehydratase in selected genera ofEnterobacteriaceae and Propionibacteriaceae. J Bacteriol 141:1439–1442
    [Google Scholar]
  50. Vitols E., Walker G. A., Huennekens R. M. 1965; Enzymatic conversion of vitamin B12s to a cobamide coenzyme,α-(5,6-dimethylbenzimidazolyl)deoxyadenosylcobamide (adenosyl-B12). J Biol Chem 241:1455–1461
    [Google Scholar]
  51. Walker G. A., Murphy S., Huennekens F. M. 1969; Enzymatic conversion of vitamin B12a to adenosyl-B12: evidence for the existence of two separate reducing systems. Arch Biochem Biophys 134:95–102 [CrossRef]
    [Google Scholar]
  52. Watanabe F., Oki Y., Nakano Y., Kitaoka S. 1987; Purification and characterization of aquacobalamin reductase (NADPH) from Euglena gracilis. J Biol Chem 262:11514–11518
    [Google Scholar]
  53. Watanabe F., Yamaji R., Isegawa Y., Yamamoto T., Tamura Y., Nakano Y. 1993; Characterization of aquacobalamin reductase (NADPH) from Euglena gracilis. Arch Biochem Biophys 305:421–427 [CrossRef]
    [Google Scholar]
  54. Watanabe F., Saido H., Yamaji R., Miyatake K., Isegawa Y., Ito A., Yubisui T., Rosenblatt D. S., Nakano Y. 1996; Mitochondrial NADH- or NADPH-linked aquacobalamin reductase activity is low in human skin fibroblasts with defects in synthesis of cobalamin coenzymes. J Nutr 126:2947–2951
    [Google Scholar]
  55. Weissbach H., Redfield B., Peterkofsky A. 1961; Conversion of vitamin B12 to coenzyme B12 in cell-free extracts ofClostridium tetanomorphum. J Biol Chem 236:PC40–42
    [Google Scholar]
  56. Weissbach H., Redfield B. G., Peterkofsky A. 1962; Biosynthesis of the B12 coenzyme: requirements for release of cyanide and spectral changes. J Biol Chem 237:3217–3222
    [Google Scholar]
  57. Wilson A., Leclerc D., Rosenblatt D. S., Gravel R. A. 1999; Molecular basis for methionine synthase reductase deficiency in patients belonging to the cblE complementation group of disorders in folate/cobalamin metabolism. Hum Mol Genet 8:2009–2016 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.27755-0
Loading
/content/journal/micro/10.1099/mic.0.27755-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error