1887

Abstract

pv. syringae strain FF5 is a phytopathogen associated with a rapid dieback on ornamental pear trees. and the human pathogen produce the exopolysaccharide alginate, a copolymer of mannuronic and guluronic acid. In , the response regulator AlgR (AlgR1) is required for transcription of and , which encode key enzymes in the alginate biosynthetic pathway. In FF5, however, is not required for the activation of . Interestingly, mutants of remain nonmucoid, indicating an undefined role for this response regulator in alginate biosynthesis. In the current study, the promoter region was cloned from pv. syringae strain FF5, and sequence analysis of the promoter indicated the presence of potential binding sites for AlgR and , the alternative sigma factor encoded by . The promoter from FF5 () was cloned upstream of a promoterless glucuronidase gene (), and the transcriptional fusion was used to monitor expression in strains FF5.32 ( mutant of FF5) and PG4180.K2 ( mutant of pv. glycinea PG4180). Expression of the fusion was fourfold lower in both the and mutants as compared to respective wild-type strains, indicating that both AlgR and are required for full activation of transcription in pv. syringae. AlgR from was successfully overproduced in as a C-terminal translational fusion to the maltose-binding protein (MBP). Gel shift experiments indicated that MBP–AlgR binds strongly to the promoter region. Biological assays demonstrated that the mutant was significantly impaired in both pathogenicity and epiphytic fitness as compared to the wild-type strain. These results, along with the gene expression studies, indicate that AlgR has a positive role in the activation of in and contributes to both virulence and epiphytic fitness. Furthermore, the symptoms observed with wild-type FF5 suggest that this strain can move systemically in leaf tissue, and that a functional copy of is required for systemic movement.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27199-0
2004-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502727.html?itemId=/content/journal/micro/10.1099/mic.0.27199-0&mimeType=html&fmt=ahah

References

  1. Alarcón-Chaidez, F., Keith, L., Zhao, Y. & Bender, C. L. ( 2003; ). RpoN (σ 54) is required for plasmid-encoded coronatine biosynthesis in Pseudomonas syringae. Plasmid 49, 106–117.[CrossRef]
    [Google Scholar]
  2. Alfano, J. R. & Collmer, A. ( 1996; ). Bacterial pathogens in plants: life up against the wall. Plant Cell 8, 1683–1698.[CrossRef]
    [Google Scholar]
  3. Bender, C. L., Young, S. A. & Mitchell, R. E. ( 1991; ). Conservation of plasmid DNA sequences in coronatine producing pathovars of Pseudomonas syringae. Appl Environ Microbiol 57, 993–999.
    [Google Scholar]
  4. Bender, C. L., Liyanage, H., Palmer, D., Ullrich, M., Young, S. A. & Mitchell, R. E. ( 1993; ). Characterization of the genes controlling biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic acid and coronamic acid. Gene 133, 31–38.[CrossRef]
    [Google Scholar]
  5. Boch, J., Joardar, V., Gao, L., Robertson, T. L., Lim, M. & Kunkel, B. N. ( 2002; ). Identification of Pseudomonas syringae genes that are induced during infection of Arabidopsis thaliana. Mol Microbiol 44, 73–88.[CrossRef]
    [Google Scholar]
  6. Chatterjee, A., Cui, Y., Yang, H., Collmer, A., Alfano, J. R. & Chatterjee, A. K. ( 2003; ). GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant–Microbe Interact 16, 1106–1117.[CrossRef]
    [Google Scholar]
  7. Chitnis, C. E. & Ohman, D. E. ( 1993; ). Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8, 583–590.[CrossRef]
    [Google Scholar]
  8. Comolli, J. C., Hauser, A. R., Waite, L., Whitchurch, C. B., Mattick, J. S. & Engel, J. N. ( 1999; ). Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun 67, 3625–3630.
    [Google Scholar]
  9. Coyne, M. J., Jr, Russell, K. S., Coyle, C. L. & Goldberg, J. B. ( 1994; ). The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol 176, 3500–3507.
    [Google Scholar]
  10. Deretic, V., Gill, J. F. & Chakrabarty, A. M. ( 1987; ). Pseudomonas aeruginosa infection in cystic fibrosis: nucleotide sequence and transcriptional regulation of the algD gene. Nucleic Acids Res 15, 4567–4581.[CrossRef]
    [Google Scholar]
  11. Deretic, V., Kishit, R., Konyecsni, W. M., Chakrabarty, A. M. & Misra, T. K. ( 1989; ). The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 171, 1278–1283.
    [Google Scholar]
  12. Fakhr, M. K., Peñaloza-Vázquez, A., Chakrabarty, A. M. & Bender, C. L. ( 1999; ). Regulation of alginate biosynthesis in Pseudomonas syringae pv. syringae. J Bacteriol 181, 3478–3485.
    [Google Scholar]
  13. Fett, W. F., Wijey, C. & Lifson, E. R. ( 1992; ). Occurrence of alginate gene sequences among members of the Pseudomonad rRNA homology groups I–IV. FEMS Microbiol Lett 99, 151–158.
    [Google Scholar]
  14. Fujiwara, S., Zielinski, N. A. & Chakrabarty, A. M. ( 1993; ). Enhancer-like activity of AlgR1-binding site in alginate gene activation: positional, orientational, and sequence specificity. J Bacteriol 175, 5452–5459.
    [Google Scholar]
  15. Hattingh, M. J., Roos, I. M. M. & Mansvelt, E. L. ( 1989; ). Infection and systemic invasion of deciduous fruit trees by Pseudomonas syringae in South Africa. Plant Dis 73, 784–789.[CrossRef]
    [Google Scholar]
  16. Hendrickson, E. L., Guevera, P., Peñaloza-Vázquez, A., Shao, J., Bender, C. & Ausubel, F. M. ( 2000; ). Virulence of the phytopathogen Pseudomonas syringae pathovar maculicola is rpoN dependent. J Bacteriol 182, 3498–3507.[CrossRef]
    [Google Scholar]
  17. Hirano, S. S. & Upper, C. D. ( 2000; ). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus and epiphyte. Microbiol Mol Biol Rev 64, 624–653.[CrossRef]
    [Google Scholar]
  18. Jones, J. D. G. & Gutterson, N. ( 1987; ). An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61, 299–306.[CrossRef]
    [Google Scholar]
  19. Kato, J. & Chakrabarty, A. M. ( 1991; ). Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in P. aeruginosa. Proc Natl Acad Sci U S A 88, 1760–1764.[CrossRef]
    [Google Scholar]
  20. Keane, P. J., Kerr, A. & New, P. B. ( 1970; ). Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust J Biol Sci 23, 585–595.
    [Google Scholar]
  21. Keen, N. T., Tamaki, S., Kobayashi, D. & Trollinger, D. ( 1988; ). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70, 191–197.[CrossRef]
    [Google Scholar]
  22. Keith, L. M. W. & Bender, C. L. ( 1999; ). AlgT (σ 22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 181, 7176–7184.
    [Google Scholar]
  23. Keith, L. M. W. & Bender, C. L. ( 2001; ). Genetic divergence in the algT-muc operon controlling alginate biosynthesis and response to environmental stress in Pseudomonas syringae. DNA Seq 12, 125–129.
    [Google Scholar]
  24. Keith, R. C., Keith, L. M. W., Hernández-Guzmán, G., Uppalapati, S. R. & Bender, C. L. ( 2003; ). Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Microbiology 149, 1127–1138.[CrossRef]
    [Google Scholar]
  25. Kidambi, S. P., Sundin, G. W., Palmer, D. A., Chakrabarty, A. M. & Bender, C. L. ( 1995; ). Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 61, 2172–2179.
    [Google Scholar]
  26. King, E. O., Ward, M. K. & Raney, D. E. ( 1954; ). Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44, 301–307.
    [Google Scholar]
  27. Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, R. M., III & Peterson, K. M. ( 1994; ). pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16, 800–802.
    [Google Scholar]
  28. Latorre, B. A., Rioja, M. E. & Lillo, C. ( 2000; ). The effect of temperature on infection and a warning system for pear blossom blast caused by Pseudomonas syringae pv. syringae. Crop Prot 21, 33–39.
    [Google Scholar]
  29. Lizewski, S. E., Lundberg, D. S. & Schurr, M. J. ( 2002; ). The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun 70, 6083–6093.[CrossRef]
    [Google Scholar]
  30. Lyczak, J. B., Cannon, C. L. & Pier, G. B. ( 2002; ). Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15, 194–222.[CrossRef]
    [Google Scholar]
  31. Manceau, C., Lalande, J. C., Lachaud, G., Chartier, R. & Paulin, J. P. ( 1990; ). Bacterial colonization of flowers and leaf surface of pear trees. Acta Hortic 273, 73–81.
    [Google Scholar]
  32. May, T. B. & Chakrabarty, A. M. ( 1994; ). Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol 2, 151–157.[CrossRef]
    [Google Scholar]
  33. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Mohr, C. D., Leveau, J. H. J., Krieg, D. P., Hibler, N. S. & Deretic, V. ( 1992; ). AlgR-binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J Bacteriol 174, 6624–6633.
    [Google Scholar]
  35. Moragrega, C., Llorente, I., Manceau, C. & Montesinos, E. ( 2003; ). Susceptibility of European pear cultivars to Pseudomonas syringae pv. syringae using immature fruit and detached leaf assays. Eur J Plant Pathol 109, 319–326.[CrossRef]
    [Google Scholar]
  36. Nikolskaya, A. N. & Galperin, M. Y. ( 2002; ). A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res 30, 2453–2459.[CrossRef]
    [Google Scholar]
  37. Olvera, C., Goldberg, J. B., Sánchez, R. & Soberón-Chávez, G. ( 1999; ). The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179, 85–90.[CrossRef]
    [Google Scholar]
  38. O'Toole, G. A. & Kolter, R. ( 1998; ). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295–304.[CrossRef]
    [Google Scholar]
  39. Palmer, D. A., Bender, C. L. & Sharma, S. ( 1997; ). Use of Tn5-gusA5 to investigate environmental and nutritional effects on gene expression in the coronatine biosynthetic gene cluster of Pseudomonas syringae pv. glycinea. Can J Microbiol 43, 517–525.[CrossRef]
    [Google Scholar]
  40. Peñaloza-Vázquez, A. & Bender, C. L. ( 1998; ). Characterization of CorR, a transcriptional activator which is required for biosynthesis of the phytotoxin coronatine. J Bacteriol 180, 6252–6259.
    [Google Scholar]
  41. Peñaloza-Vázquez, A., Kidambi, S. P., Chakrabarty, A. M. & Bender, C. L. ( 1997; ). Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae. pv. syringae. J Bacteriol 179, 4464–4472.
    [Google Scholar]
  42. Riggs, P. ( 1994; ). Expression and purification of maltose-binding protein fusions. In Current Protocols in Molecular Biology, pp. 16.6.1–16.6.13. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Wiley Interscience.
  43. Roine, E., Raineri, D. M., Romantschuk, M., Wilson, M. & Nunn, D. N. ( 1998; ). Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. Mol Plant–Microbe Interact 11, 1048–1056.[CrossRef]
    [Google Scholar]
  44. Roos, I. M. M. & Hattingh, M. J. ( 1987; ). Systemic invasion of plum leaves and shoots by Pseudomonas syringae pv. syringae introduced into petioles. Phytopathology 77, 1253–1257.[CrossRef]
    [Google Scholar]
  45. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  46. Shankar, S., Ye, R., Schlictman, D. & Chakrabarty, A. M. ( 1995; ). Exopolysaccharide alginate synthesis in Pseudomonas aeruginosa: enzymology and regulation of gene expression. Adv Enzymol 70, 221–255.
    [Google Scholar]
  47. Staskawicz, B. J., Dahlbeck, D. & Keen, N. T. ( 1984; ). Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Natl Acad Sci U S A 81, 6024–6028.[CrossRef]
    [Google Scholar]
  48. Sundin, G. W. & Bender, C. L. ( 1993; ). Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 59, 1018–1024.
    [Google Scholar]
  49. Sundin, G. W., Demezas, D. H. & Bender, C. L. ( 1994; ). Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides. Appl Environ Microbiol 60, 4421–4431.
    [Google Scholar]
  50. Totten, P. A., Lara, J. C. & Lory, S. ( 1990; ). The rpoN gene product of Pseudomonas aeruginosa is required for the expression of diverse genes, including the flagellum gene. J Bacteriol 172, 389–396.
    [Google Scholar]
  51. Whitchurch, C. B., Alm, R. A. & Mattick, J. S. ( 1996; ). The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 93, 9839–9843.[CrossRef]
    [Google Scholar]
  52. Yessad, S., Manceau, C. & Luisetti, J. ( 1992; ). A detached leaf assay to evaluate virulence and pathogenicity of strains of Pseudomonas syringae pv. syringae on pear. Plant Dis 76, 370–373.[CrossRef]
    [Google Scholar]
  53. Yu, J., Peñaloza-Vázquez, A., Chakrabarty, A. M. & Bender, C. L. ( 1999; ). Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33, 712–720.[CrossRef]
    [Google Scholar]
  54. Zielinski, N. A., Chakrabarty, A. & Berry, A. ( 1991; ). Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J Biol Chem 266, 9754–9763.
    [Google Scholar]
  55. Zielinski, N. A., Maharaj, R., Roychoudhury, S., Danganan, C. E., Hendrickson, W. & Chakrabarty, A. M. ( 1992; ). Alginate synthesis in Pseudomonas aeruginosa: environmental regulation of the algC promoter. J Bacteriol 174, 7680–7688.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27199-0
Loading
/content/journal/micro/10.1099/mic.0.27199-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error