1887

Abstract

Phycobilisomes (PBS) are the major light-harvesting complexes of cyanobacteria. These usually blue-coloured multiprotein assemblies are rapidly degraded when the organisms are starved for combined nitrogen. This proteolytic process causes a colour change of the cyanobacterial cells from blue-green to yellow-green (‘bleaching’). As is well documented for the unicellular, non-diazotrophic cyanobacteria PCC 7942 and sp. PCC 6803, a gene termed plays a key role in PBS degradation. Filamentous, diazotrophic cyanobacteria like adapt to nitrogen deprivation by differentiation of N-fixing heterocysts. However, during the first hours after nitrogen deprivation all cells degrade their PBS. When heterocysts mature and nitrogenase becomes active, vegetative cells resynthesize their light-harvesting complexes while in heterocysts the phycobiliprotein content remains very low. Expression and function of in sp. PCC 7120 was investigated. This strain has two homologous genes, one on the chromosome () and one on plasmid delta (). Northern blot analysis indicated that only the chromosomal gene is up-regulated upon nitrogen starvation. Mutants with interrupted and genes, respectively, grew on N and developed functional heterocysts. Mutant Δ behaved like the wild-type. However, mutant Δ was unable to degrade its PBS, which was most obvious in non-bleaching heterocysts. The results show that NblA, encoded by the chromosomal gene, is required for PBS degradation in but is not essential for heterocyst differentiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27153-0
2004-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502739.html?itemId=/content/journal/micro/10.1099/mic.0.27153-0&mimeType=html&fmt=ahah

References

  1. Allen, M. M. & Smith, A. J. ( 1969; ). Nitrogen chlorosis in blue-green algae. Arch Microbiol 69, 114–120.
    [Google Scholar]
  2. Baier, K., Nicklisch, S., Grundner, C., Reinecke, J. & Lockau, W. ( 2001; ). Expression of two nblA-homologous genes is required for phycobilisome degradation in nitrogen-starved Synechocystis sp. PCC 6803. FEMS Microbiol Lett 195, 35–39.[CrossRef]
    [Google Scholar]
  3. Bhaya, D., Schwarz, R. & Grossman, A. R. ( 2000; ). Molecular responses to environmental stress. In The Ecology of Cyanobacteria, pp. 397–442. Edited by B. A Whitton & M. Potts. Dordrecht: Kluwer Academic.
  4. Black, T. A., Cai, Y. & Wolk, C. P. ( 1993; ). Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol 9, 77–84.[CrossRef]
    [Google Scholar]
  5. Boresch, K. ( 1910; ). Zur Physiologie der Blaualgenfarbstoffe. Lotos (Prague) 58, 344–345.
    [Google Scholar]
  6. Boussiba, S. & Richmond, A. E. ( 1980; ). C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125, 143–147.[CrossRef]
    [Google Scholar]
  7. Bradley, S. & Carr, N. G. ( 1976; ). Heterocyst and nitrogenase development in Anabaena cylindrica. J Gen Microbiol 96, 175–184.[CrossRef]
    [Google Scholar]
  8. Braun-Howland, E. B. & Nierzwicki-Bauer, S. A. ( 1990; ). Occurrence of the 32-kDa QB-binding protein of photosystem II in vegetative cells, heterocysts and akinetes of Azolla caroliniana cyanobionts. Planta 180, 361–371.[CrossRef]
    [Google Scholar]
  9. Bricker, T. M. & Ghanotakis, D. F. ( 1996; ). Introduction to oxygen evolution and the oxygen-evolving complex. In Oxygenic Photosynthesis: the Light Reactions, pp. 113–136. Edited by D. R. Ort & C. F. Yocum. Dordrecht: Kluwer Academic.
  10. Cai, Y. & Wolk, C. P. ( 1990; ). Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172, 3138–3145.
    [Google Scholar]
  11. Collier, J. L. & Grossman, A. R. ( 1992; ). Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same. J Bacteriol 174, 4718–4726.
    [Google Scholar]
  12. Collier, J. L. & Grossman, A. R. ( 1994; ). A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13, 1039–1047.
    [Google Scholar]
  13. de Alda, J. A., Lichtlé, C., Thomas, J.-C. & Houmard, J. ( 2004; ). Immunolocalization of NblA, a protein involved in phycobilisome turnover, during heterocyst differentiation. Microbiology 150, 1377–1384.[CrossRef]
    [Google Scholar]
  14. Elhai, J. & Wolk, C. P. ( 1988a; ). A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68, 119–138.[CrossRef]
    [Google Scholar]
  15. Elhai, J. & Wolk, C. P. ( 1988b; ). Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167, 747–754.
    [Google Scholar]
  16. Exss-Sonne, P., Tölle, J., Bader, K. P., Pistorius, E. K. & Michel, K. P. ( 2000; ). The IdiA protein of Synechococcus sp. PCC 7942 functions in protecting photosystem II under oxidative stress. Photosynth Res 63, 145–157.[CrossRef]
    [Google Scholar]
  17. Fleming, H. & Haselkorn, R. ( 1974; ). The program of protein synthesis during heterocyst differentiation in nitrogen-fixing blue-green algae. Cell 3, 159–170.[CrossRef]
    [Google Scholar]
  18. Foulds, I. J. & Carr, N. G. ( 1977; ). A proteolytic enzyme degrading phycocyanin in the cyanobacterium Anabaena cylindrica. FEMS Microbiol Lett 2, 117–119.[CrossRef]
    [Google Scholar]
  19. Görl, M., Sauer, J., Baier, T. & Forchhammer, K. ( 1998; ). Nitrogen-starvation-induced chlorosis in Synechococcus PCC 7942: adaptation to long-term survival. Microbiology 144, 2449–2458.[CrossRef]
    [Google Scholar]
  20. Grossman, A. R., Schaefer, M. R., Chiang, G. G. & Collier, J. ( 1994; ). The responses of cyanobacteria to environmental conditions: light and nutrients. In The Molecular Biology of Cyanobacteria, pp. 641–675. Edited by D. A. Bryant. Dordrecht: Kluwer Academic.
  21. Houmard, J. & Tandeau de Marsac, N. ( 1988; ). Cyanobacterial genetic tools: current status. Methods Enzymol 167, 808–847.
    [Google Scholar]
  22. Jacob, C. ( 2002; ). Charakterisierung eines nblA-homologen Gens in Anabaena variabilis ATCC 29413. Diplomarbeit, Institut für Biologie, Humboldt-Universität zu Berlin.
  23. Kaneko, T., Sato, S., Kotani, H. & 21 other authors ( 1996; ). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. 2. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3, 109–136.[CrossRef]
    [Google Scholar]
  24. Kaneko, T., Nakamura, Y., Wolk, C. P. & 19 other authors ( 2001; ). Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8, 205–213.[CrossRef]
    [Google Scholar]
  25. Kaplan, D., Calvert, H. E. & Peters, G. A. ( 1986; ). The Azolla-Anabaena azollae relationship. XII. Nitrogenase activity and phycobiliproteins of the endophyte as a function of leaf age and cell type. Plant Physiol 80, 884–890.[CrossRef]
    [Google Scholar]
  26. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  27. Li, H. & Sherman, L. A. ( 2002; ). Characterization of Synechocystis sp. strain PCC 6803 and ΔnblA mutants under nitrogen-deficient conditions. Arch Microbiol 178, 256–266.[CrossRef]
    [Google Scholar]
  28. Lockau, W., Massalsky, B. & Dirmeier, A. ( 1988; ). Purification and partial characterization of a calcium-stimulated protease from the cyanobacterium Anabaena variabilis. Eur J Biochem 172, 433–438.[CrossRef]
    [Google Scholar]
  29. Luque, I., Ochoa de Alda, J. A. G., Richaud, C., Zabulon, G., Thomas, J.-C. & Houmard, J. ( 2003; ). The NblAI protein from the filamentous cyanobacterium Tolypothrix PCC 7601: regulation of its expression and interactions with phycobilisome components. Mol Microbiol 50, 1043–1054.[CrossRef]
    [Google Scholar]
  30. MacColl, R. ( 1998; ). Cyanobacterial phycobilisomes. J Struct Biol 124, 311–334.[CrossRef]
    [Google Scholar]
  31. Maldener, I., Lockau, W., Cai, Y. & Wolk, C. P. ( 1991; ). Calcium-dependent protease of the cyanobacterium Anabaena: molecular cloning and expression of the gene in Escherichia coli, sequencing and site directed mutagenesis. Mol Gen Genet 225, 113–120.
    [Google Scholar]
  32. Meeks, J. C. & Elhai, J. ( 2002; ). Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66, 94–121.[CrossRef]
    [Google Scholar]
  33. Michel, K.-P., Exss-Sonne, P., Scholten-Beck, G., Kahmann, U., Ruppel, H. G. & Pistorius, E. K. ( 1998; ). Immunocytochemical localization of IdiA, a protein expressed under iron or manganese limitation in the mesophilic cyanobacterium Synechococcus PCC 6301 and the thermophilic cyanobacterium Synechococcus elongatus. Planta 205, 73–81.[CrossRef]
    [Google Scholar]
  34. Michel, K.-P., Berry, S., Hifney, A., Kruip, J. & Pistorius, E. K. ( 2003; ). Adaptation to iron deficiency: a comparison between the cyanobacterium Synechococcus elongatus PCC 7942 wild type and a DspA-free mutant. Photosynth Res 75, 71–84.[CrossRef]
    [Google Scholar]
  35. Mullineaux, C. W. ( 1992; ). Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterial mutant lacking photosystem II. Biochim Biophys Acta 1184, 71–77.
    [Google Scholar]
  36. Myers, J., Graham, J.-R. & Wang, R. T. ( 1980; ). Light harvesting in Anacystis nidulans studied in pigment mutants. Plant Physiol 66, 1144–1149.[CrossRef]
    [Google Scholar]
  37. Nanni, B., Balestreri, E., Dainese, E., Cozzani, I. & Felicioli, R. ( 2001; ). Characterisation of a specific phycocyanin-hydrolysing protease purified from Spirulina platensis. Microbiol Res 156, 259–266.[CrossRef]
    [Google Scholar]
  38. Peterson, R. B. & Wolk, C. P. ( 1978; ). High recovery of nitrogenase activity and of 55Fe-labeled nitrogenase in heterocysts isolated from Anabaena variabilis. Proc Natl Acad Sci U S A 75, 6271–6275.[CrossRef]
    [Google Scholar]
  39. Peterson, R. B., Shaw, E. R., Dolan, E. & Ke, B. ( 1981a; ). A photochemically active heterocyst preparation from Anabaena variabilis. Photobiochem Photobiophys 2, 79–84.
    [Google Scholar]
  40. Peterson, R. B., Dolan, E., Calvert, H. E. & Ke, B. ( 1981b; ). Energy transfer from phycobiliproteins to photosystem I in vegetative cells and heterocysts of Anabaena variabilis. Biochim Biophys Acta 634, 237–248.[CrossRef]
    [Google Scholar]
  41. Rakhimberdieva, M. G., Boichenko, V. A., Karapetyan, N. V. & Stadnichuk, I. N. ( 2001; ). Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry 40, 15780–15788.[CrossRef]
    [Google Scholar]
  42. Richaud, C., Zabulon, G., Joder, A. & Thomas, J.-C. ( 2001; ). Nitrogen or sulphur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183, 2989–2994.[CrossRef]
    [Google Scholar]
  43. Rippka, R. ( 1988; ). Isolation and purification of cyanobacteria. Methods Enzymol 167, 3–27.
    [Google Scholar]
  44. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  45. Sidler, W. A. ( 1994; ). Phycobiliprotein and phycobilisome structure. In The Molecular Biology of Cyanobacteria, pp. 139–216. Edited by D. A. Bryant. Dordrecht: Kluwer Academic.
  46. Simon, R. D. ( 1971; ). Cyanophycin granules from the blue-green alga Anabaena cylindrica: a reserve material consisting of copolymers of aspartic acid and arginine. Proc Natl Acad Sci U S A 68, 265–267.[CrossRef]
    [Google Scholar]
  47. Tandeau de Marsac, N. & Houmard, J. ( 1988; ). Complementary chromatic adaptation: physiological conditions and action spectra. Methods Enzymol 167, 318–328.
    [Google Scholar]
  48. Thomas, J. ( 1970; ). Absence of the pigments of photosystem II of photosynthesis in heterocysts of a blue-green alga. Nature 228, 181–183.
    [Google Scholar]
  49. Thomas, J. ( 1972; ). Relationship between age of culture and occurence of pigments of photosystem II of photosynthesis in heterocysts of a blue-green alga. J Bacteriol 110, 92–95.
    [Google Scholar]
  50. Wolk, C. P. ( 1996; ). Heterocyst formation. Annu Rev Genet 30, 59–78.[CrossRef]
    [Google Scholar]
  51. Wolk, C. P. & Simon, R. D. ( 1969; ). Pigments and lipids of heterocysts. Planta 86, 92–97.[CrossRef]
    [Google Scholar]
  52. Wolk, C. P., Ernst, A. & Elhai, J. ( 1994; ). Heterocyst metabolism and development. In The Molecular Biology of Cyanobacteria, pp. 769–823. Edited by D. A. Bryant. Dordrecht: Kluwer Academic.
  53. Wood, N. B. & Haselkorn, R. ( 1979; ). Proteinase activity during heterocyst differentiation in nitrogen-fixing cyanobacteria. In Limited Proteolysis in Microorganisms, pp. 159–166. Edited by G. N. Cohen & H. Holzer. Bethesda, MD: US Department of Health, Education and Welfare Publication 79-1591.
  54. Yamanaka, Y. & Glazer, A. N. ( 1980; ). Dynamic aspects of phycobilisome structure. Arch Microbiol 124, 39–47.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27153-0
Loading
/content/journal/micro/10.1099/mic.0.27153-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error