1887

Abstract

The recently published genome [ Paulsen, I. T., Banerjei, L., Myers, G. S. & 29 other authors (2003). , 2071–2074) ] was examined and 41 putative cell-wall-anchored proteins were identified. Seventeen of these proteins are predicted to contain tandemly repeated immunoglobulin-like folds characteristic of the structural organization of staphylococcal adhesins of the MSCRAMM (microbial surface component recognizing adhesive matrix molecules) type. Two of the nine proteins selected for further study appear to represent cell-wall-anchored enzymes. It is proposed that the remaining seven proteins constitute a family of structurally related proteins potentially interacting with proteins of the host. This family includes the previously identified collagen/laminin-binding MSCRAMM ACE [ Rich, R. L., Kreikemeyer, B., Owens, R. T., LaBrenz, S., Narayana, S. V., Weinstock, G. M., Murray, B. E. & Hook, M. (1999). , 26939–26945 ]. It is further demonstrated that genes encoding the seven putative MSCRAMMs are present in all strains tested and these proteins appear to be expressed during infection in humans, since sera from infected individuals contain antibodies reacting with recombinant versions of the enterococcal proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27074-0
2004-07-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502069.html?itemId=/content/journal/micro/10.1099/mic.0.27074-0&mimeType=html&fmt=ahah

References

  1. Arduino R. C., Murray B. E., Rakita R. M.. 1994; Roles of antibodies and complement in phagocytic killing of enterococci. Infect Immun62:987–993
    [Google Scholar]
  2. Coque T. M., Patterson J. E., Steckelberg J. M., Murray B. E.. 1995; Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis171:1223–1229[CrossRef]
    [Google Scholar]
  3. Cucarella C., Solano C., Valle J., Amorena B., Lasa I., Penades J. R.. 2001; Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol183:2888–2896[CrossRef]
    [Google Scholar]
  4. Deivanayagam C. C., Perkins S., Danthuluri S., Owens R. T., Bice T., Nanavathy T., Foster T. J., Hook M., Narayana S. V.. 1999; Crystallization of ClfA and ClfB fragments: the fibrinogen-binding surface proteins of Staphylococcus aureus. Acta Crystallogr D Biol Crystallogr55:554–556[CrossRef]
    [Google Scholar]
  5. Deivanayagam C. C., Rich R. L., Carson M., Owens R. T., Danthuluri S., Bice T., Hook M., Narayana S. V.. 2000; Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure Fold Des8:67–78[CrossRef]
    [Google Scholar]
  6. Deivanayagam C. C., Wann E. R., Chen W., Carson M., Rajashankar K. R., Hook M., Narayana S. V.. 2002; A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J21:6660–6672[CrossRef]
    [Google Scholar]
  7. Galli D., Lottspeich F., Wirth R.. 1990; Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol Microbiol4:895–904[CrossRef]
    [Google Scholar]
  8. Galli D., Friesenegger A., Wirth R.. 1992; Transcriptional control of sex-pheromone-inducible genes on plasmid pAD1 of Enterococcus faecalis and sequence analysis of a third structural gene for (pPD1-encoded) aggregation substance. Mol Microbiol6:1297–1308[CrossRef]
    [Google Scholar]
  9. Geourjon C., Deleage G.. 1994; SOPM: a self-optimized method for protein secondary structure prediction. Protein Eng7:157–164[CrossRef]
    [Google Scholar]
  10. Hall A. E., Domanski P. J., Patel P. R.. & 7 other authors. 2003; Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect Immun71:6864–6870[CrossRef]
    [Google Scholar]
  11. Huycke M. M., Sahm D. F., Gilmore M. S.. 1998; Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis4:239–249[CrossRef]
    [Google Scholar]
  12. Josefsson E., McCrea K. W., Ni Eidhin D., O'Connell D., Cox J., Hook M., Foster T. J.. 1998; Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology144:3387–3395[CrossRef]
    [Google Scholar]
  13. Kelley L. A., MacCallum R. M., Sternberg M. J. E.. 2000; Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol299:499–520
    [Google Scholar]
  14. King R. D., Sternberg M. J.. 1996; Identification and application of the concepts important for accurate and reliable secondary structure prediction. Protein Sci5:2298–2310[CrossRef]
    [Google Scholar]
  15. Mazmanian S. K., Ton-That H., Schneewind O.. 2001; Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol40:1049–1057[CrossRef]
    [Google Scholar]
  16. McCrea K. W., Hartford O., Davis S., Eidhin D. N., Lina G., Speziale P., Foster T. J., Hook M.. 2000; The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology146:1535–1546
    [Google Scholar]
  17. Murray B. E.. 1990; The life and times of the enterococcus. Clin Microbiol Rev3:46–65
    [Google Scholar]
  18. Murray B. E., Weinstock G. M.. 1999; Enterococci: new aspects of an old organism. Proc Assoc Am Physicians111:328–334[CrossRef]
    [Google Scholar]
  19. Nallapareddy S. R., Singh K. V., Duh R. W., Weinstock G. M., Murray B. E.. 2000a; Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of ace during human infections. Infect Immun68:5210–5217[CrossRef]
    [Google Scholar]
  20. Nallapareddy S. R., Qin X., Weinstock G. M., Hook M., Murray B. E.. 2000b; Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun68:5218–5224[CrossRef]
    [Google Scholar]
  21. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T.. 1995; How to measure and predict the molar absorption coefficient of a protein. Protein Sci4:2411–2423[CrossRef]
    [Google Scholar]
  22. Pallen M. J., Lam A. C., Antonio M., Dunbar K.. 2001; An embarrassment of sortases – a richness of substrates?. Trends Microbiol9:97–102[CrossRef]
    [Google Scholar]
  23. Patti J. M., Hook M.. 1994; Microbial adhesins recognizing extracellular matrix macromolecules. Curr Biol6:752–758[CrossRef]
    [Google Scholar]
  24. Paulsen I. T., Banerjei L., Myers G. S.. & 29 other authors. 2003; Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science299:2071–2074[CrossRef]
    [Google Scholar]
  25. Perkins S., Walsh E. J., Deivanayagam C. C., Narayana S. V., Foster T. J., Hook M.. 2001; Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus. J Biol Chem276:44721–44728[CrossRef]
    [Google Scholar]
  26. Ponnuraj K., Xu Y., Moore D., Deivanayagam C. C., Boque L., Hook M., Narayana S. V.. 2002; Crystallization and preliminary X-ray crystallographic analysis of Ace: a collagen-binding MSCRAMM from Enterococcus faecalis. Biochim Biophys Acta 1596;173–176[CrossRef]
    [Google Scholar]
  27. Ponnuraj K., Bowden G., Davis S., Gurusiddappa S., Moore D., Choe D., Xu Y., Hook M., Narayana S. V.. 2003; A ‘dock, lock, and latch’ structural model for a staphylococcal adhesin binding to fibrinogen. Cell115:217–228[CrossRef]
    [Google Scholar]
  28. Rich R. L., Kreikemeyer B., Owens R. T., LaBrenz S., Narayana S. V., Weinstock G. M., Murray B. E., Hook M.. 1999; Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. J Biol Chem274:26939–26945[CrossRef]
    [Google Scholar]
  29. Rost B., Sander C.. 1993; Prediction of protein secondary structure at better than 70 % accuracy. J Mol Biol232:584–599[CrossRef]
    [Google Scholar]
  30. Rozdzinski E., Marre R., Susa M., Wirth R., Muscholl-Silberhorn A.. 2001; Aggregation substance-mediated adherence of Enterococcus faecalis to immobilized extracellular matrix proteins. Microb Pathog30:211–220[CrossRef]
    [Google Scholar]
  31. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B.. 1989; In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother33:1588–1591[CrossRef]
    [Google Scholar]
  32. Schneewind O., Model P., Fischetti V. A.. 1992; Sorting of protein A to the staphylococcal cell wall. Cell70:267–281[CrossRef]
    [Google Scholar]
  33. Styriak I., Laukova A., Fallgren C., Wadstrom T.. 1999; Binding of selected extracellular proteins to enterococci and Streptococcus bovis of animal origin. Curr Microbiol39:327–335[CrossRef]
    [Google Scholar]
  34. Styriak I., Laukova A., Ljungh A.. 2002; Lectin-like binding and antibiotic sensitivity of enterococci from wild herbivores. Microbiol Res157:293–303[CrossRef]
    [Google Scholar]
  35. Symersky J., Patti J. M., Carson M.. & 8 other authors. 1997; Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat Struct Biol4:833–838[CrossRef]
    [Google Scholar]
  36. Tailor S. A., Bailey E. M., Rybak M. J.. 1993; Enterococcus, an emerging pathogen. Ann Pharmacother27:1231–1242
    [Google Scholar]
  37. Vernachio J., Bayer A. S., Le T.. & 7 other authors. 2003; Anti-clumping factor A immunoglobulin reduces the duration of methicillin-resistant Staphylococcus aureus bacteremia in an experimental model of infective endocarditis. Antimicrob Agents Chemother47:3400–3406[CrossRef]
    [Google Scholar]
  38. Xiao J., Hook M., Weinstock G. M., Murray B. E.. 1998; Conditional adherence of Enterococcus faecalis to extracellular matrix proteins. FEMS Immunol Med Microbiol21:287–295[CrossRef]
    [Google Scholar]
  39. Zareba T. W., Pascu C., Hryniewicz W., Wadstrom T.. 1997; Binding of extracellular matrix proteins by enterococci. Curr Microbiol34:6–11[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27074-0
Loading
/content/journal/micro/10.1099/mic.0.27074-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error