1887

Abstract

The bean ( spp.) plant pathogen pv. phaseolicola is characterized by the ability to produce phaseolotoxin (Tox). We recently reported that the majority of the Spanish pv. phaseolicola population is unable to synthesize this toxin (Tox). These Tox isolates appear to lack the entire DNA region for the biosynthesis of phaseolotoxin (- gene cluster), as shown by PCR amplification and DNA hybridization using DNA sequences specific for separated genes of this cluster. Tox and Tox isolates also showed genomic divergence that included differences in ERIC-PCR and arbitrarily primed-PCR profiles. Tox isolates showed distinct patterns of IS genomic insertions and contained a chromosomal IS insertion that was absent from Tox isolates. Using a heteroduplex mobility assay, sequence differences were observed only among the intergenic transcribed spacer of the five rDNA operons of the Tox isolates. The techniques used allowed the unequivocal differentiation of isolates of pv. phaseolicola from the closely related soybean () pathogen, pv. glycinea. Finally, a pathogenicity island that is essential for the pathogenicity of pv. phaseolicola on beans appears to be conserved among Tox, but not among Tox isolates, which also lacked the characteristic large plasmid that carries this pathogenicity island. It is proposed that the results presented here justify the separation of the Tox and Tox pv. phaseolicola isolates into two distinct genetic lineages, designated Pph1 and Pph2, respectively, that show relevant genomic differences that include the pathogenicity gene complement.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26635-0
2004-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500473.html?itemId=/content/journal/micro/10.1099/mic.0.26635-0&mimeType=html&fmt=ahah

References

  1. Alfano, J. R., Charkowski, A. O., Deng, W.-L., Badel, J. L., Petnicki-Ocwieja, T., van Dijk, K. & Collmer, A. ( 2000; ). The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97, 4856–4861.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Catara, V., Sutra, L., Morineau, A., Achouak, W., Christen, R. & Gardan, L. ( 2002; ). Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. Int J Syst Evol Microbiol 52, 1749–1758.[CrossRef]
    [Google Scholar]
  4. Charity, J. C., Pak, K., Delwiche, C. F. & Hutcheson, S. W. ( 2003; ). Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: evidence for integron-like assembly from transposed gene cassettes. Mol Plant–Microbe Interact 16, 495–507.[CrossRef]
    [Google Scholar]
  5. de la Fuente-Martínez, J. M., Mosqueda-Cano, G., Alvarez-Morales, A. & Herrera-Estrella, L. ( 1992; ). Expression of a bacterial phaseolotoxin-resistant ornithyl transcarbamylase in transgenic tobacco confers resistance to Pseudomonas syringae pv. phaseolicola. Biotechnology 10, 905–909.[CrossRef]
    [Google Scholar]
  6. Delwart, E. L., Shpaer, E. G., Louwagie, J., McCutchan, F. E., Grez, M., Rubsamen-Waigmann, H. & Mullins, J. I. ( 1993; ). Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science 262, 1257–1261.[CrossRef]
    [Google Scholar]
  7. Deng, W.-L., Rehm, A. H., Charkowski, A. O., Rojas, C. M. & Collmer, A. ( 2003; ). Pseudomonas syringae exchangeable effector loci: sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a. J Bacteriol 185, 2592–2602.[CrossRef]
    [Google Scholar]
  8. Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F. & Grimont, P. A. D. ( 1999; ). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49, 469–478.[CrossRef]
    [Google Scholar]
  9. González, A. I., Ruiz, M. L. & Polanco, C. ( 1998; ). A race-specific insertion of transposable element IS801 in Pseudomonas syringae pv. phaseolicola. Mol Plant–Microbe Interact 11, 423–428.[CrossRef]
    [Google Scholar]
  10. González, A. J., Landeras, E. & Mendoza, M. C. ( 2000; ). Pathovars of Pseudomonas syringae causing bacterial brown spot and halo blight in Phaseolus vulgaris L. are distinguishable by ribotyping. Appl Environ Microbiol 66, 850–854.[CrossRef]
    [Google Scholar]
  11. Goto, M. & Hyodo, H. ( 1987; ). Ethylene production by cell-free extract of the kudzu strains of Pseudomonas syringae pv. phaseolicola. Plant Cell Physiol 28, 405–414.
    [Google Scholar]
  12. Gurtler, V. & Stanisich, V. A. ( 1996; ). New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142, 3–16.[CrossRef]
    [Google Scholar]
  13. Hernández-Guzmán, G. & Alvarez-Morales, A. ( 2001; ). Isolation and characterization of the gene coding for the amidinotransferase involved in the biosynthesis of phaseolotoxin in Pseudomonas syringae pv. phaseolicola. Mol Plant–Microbe Interact 14, 545–554.[CrossRef]
    [Google Scholar]
  14. Jackson, R. W., Athanassopoulos, E., Tsiamis, G. & 7 other authors ( 1999; ). Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci U S A 96, 10875–10880.[CrossRef]
    [Google Scholar]
  15. Jackson, R. W., Mansfield, J. W., Ammouneh, H. & 13 other authors ( 2002; ). Location and activity of members of a family of virPphA homologues in pathovars of Pseudomonas syringae and P. savastanoi. Mol Plant Pathol 3, 205–216.[CrossRef]
    [Google Scholar]
  16. King, E. O., Ward, N. K. & Raney, D. E. ( 1954; ). Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44, 301–307.
    [Google Scholar]
  17. Little, E. L., Bostock, R. M. & Kirkpatrick, B. C. ( 1998; ). Genetic characterization of Pseudomonas syringae pv. syringae strains from stone fruits in California. Appl Environ Microbiol 64, 3818–3823.
    [Google Scholar]
  18. Louws, F. J., Fullbright, D. W., Stephens, C. T. & de Bruijn, F. J. ( 1994; ). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60, 2286–2295.
    [Google Scholar]
  19. Manceau, C. & Horvais, A. ( 1997; ). Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Appl Environ Microbiol 63, 498–505.
    [Google Scholar]
  20. Marques, A. S. dos A., Corbière, R., Gardan, L., Tourte, C., Manceau, C., Taylor, J. D. & Samson, R. ( 2000; ). Multiphasic approach for the identification of the different classification levels of Pseudomonas savastanoi pv. phaseolicola. Eur J Plant Pathol 106, 715–734.[CrossRef]
    [Google Scholar]
  21. McManus, P. S. & Jones, A. L. ( 1995; ). Genetic fingerprinting of Erwinia amylovora strains isolated from tree-fruit crops and Rubus spp. Phytopathology 85, 1547–1553.[CrossRef]
    [Google Scholar]
  22. Mendiola, M. V., Bernales, I. & de la Cruz, F. ( 1994; ). Differential roles of the transposon termini in IS91 transposition. Proc Natl Acad Sci U S A 91, 1922–1926.[CrossRef]
    [Google Scholar]
  23. Mitchell, R. E. ( 1978; ). Halo blight of beans: toxin production by several Pseudomonas phaseolicola isolates. Physiol Plant Pathol 13, 37–49.[CrossRef]
    [Google Scholar]
  24. Murillo, J., Shen, H., Gerhold, D., Sharma, A. K., Cooksey, D. A. & Keen, N. T. ( 1994; ). Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv. tomato PT23. Plasmid 31, 275–287.[CrossRef]
    [Google Scholar]
  25. Nagahama, K., Yoshino, K., Matsuloa, M., Sato, M., Tanase, S., Ogawa, T. & Fukuda, H. ( 1994; ). Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme. Microbiology 140, 2309–2313.[CrossRef]
    [Google Scholar]
  26. Palleroni, N. J. ( 1984; ). Genus I. Pseudomonas. In Bergey's Manual of Systematic Bacteriology, pp. 141–199. Edited by N. R. Krieg & J. G. Holt. Baltimore, MD: Williams & Wilkins.
  27. Patil, S. S., Hayward, A. C. & Emmons, R. ( 1974; ). An ultraviolet-induced non-toxigenic mutant of Pseudomonas phaseolicola of altered pathogenicity. Phytopathology 64, 590–595.[CrossRef]
    [Google Scholar]
  28. Richter, G. Y., Björklöf, K., Romantschuk, M. & Mills, D. ( 1998; ). Insertion specificity and trans-activation of IS801. Mol Gen Genet 260, 381–387.[CrossRef]
    [Google Scholar]
  29. Rico, A., López, R., Asensio, C., Aizpún, M., Asensio-S.-Manzanera, C. & Murillo, J. ( 2003; ). Nontoxigenic strains of P. syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93, 1553–1559.[CrossRef]
    [Google Scholar]
  30. Rohlf, F. J. ( 1993; ). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Version 1.8. Setauket, NY: Exeter Publishing Ltd.
  31. Romantschuk, M., Zhao, Y., McCluskey, K., Williams, J. & Mills, D. ( 1990; ). Repeated sequences in Pseudomonas syringae pv. phaseolicola; distribution and possible function as insertion sequences. Symbiosis 8, 21–31.
    [Google Scholar]
  32. Romantschuk, M., Richter, G. Y., Mukhopadhyay, P. & Mills, D. ( 1991; ). IS801, an insertion sequence element isolated from Pseudomonas syringae pathovar phaseolicola. Mol Microbiol 5, 617–622.[CrossRef]
    [Google Scholar]
  33. Rudolph, K. W. E. ( 1995; ). Pseudomonas syringae pathovars. In Pathogenesis and Host Specificity in Plant Diseases, pp. 47–138. Edited by U. S. Singh, R. P. Singh & K. Kohmoto. Oxford: Elsevier.
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Sawada, H., Takeuchi, T. & Matsuda, I. ( 1997; ). Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S–23S rRNA intergenic spacer sequences. Appl Environ Microbiol 63, 282–288.
    [Google Scholar]
  36. Sawada, H., Suzuki, F., Matsuda, I. & Saitou, N. ( 1999; ). Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 49, 627–644.[CrossRef]
    [Google Scholar]
  37. Sawada, H., Kanaya, S., Tsuda, M., Suzuki, F., Azegami, K. & Saitou, N. ( 2002; ). A phylogenomic study of the OCTase genes in Pseudomonas syringae pathovars: the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes on their genomes. J Mol Evol 54, 437–457.[CrossRef]
    [Google Scholar]
  38. Schaad, N. W., Cheong, S. S., Tamaki, S., Hatziloukas, E. & Panopoulos, N. J. ( 1995; ). A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 85, 243–248.[CrossRef]
    [Google Scholar]
  39. Stevens, C., Bennett, M. A., Athanassopoulos, E., Tsiamis, G., Taylor, J. D. & Mansfield, J. W. ( 1998; ). Sequence variations in alleles of the avirulence gene avrPphE.R2 from Pseudomonas syringae pv. phaseolicola lead to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivar-specific virulence. Mol Microbiol 29, 165–177.[CrossRef]
    [Google Scholar]
  40. Sundin, G. W. & Murillo, J. ( 1999; ). Functional analysis of the Pseudomonas syringae rulAB determinant in tolerance to ultraviolet B (290–320 nm) radiation and distribution of rulAB among P. syringae pathovars. Environ Microbiol 1, 75–88.[CrossRef]
    [Google Scholar]
  41. Sundin, G. W., Demezas, D. H. & Bender, C. L. ( 1994; ). Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides. Appl Environ Microbiol 60, 4421–4431.
    [Google Scholar]
  42. Sutra, L., Bonneau, S., Hardy, S. & Gardan, L. ( 2001; ). Assessment of the genetic diversity of Pseudomonas syringae group using a DNA heteroduplex mobility assay performed on the internal transcribed spacer (ITS). In 11th Congress of the Mediterranean Phytopathological Union, pp. 13–15. Evora, Portugal.
  43. Tamura, K., Imamura, M., Yoneyama, K., Kohno, Y., Takikawa, Y., Yamaguchi, I. & Takahashi, H. ( 2002; ). Role of phaseolotoxin production by Pseudomonas syringae pv. actinidiae in the formation of halo lesions of kiwifruit canker disease. Physiol Mol Plant Pathol 60, 207–214.[CrossRef]
    [Google Scholar]
  44. Taylor, J. D., Teverson, D. M., Allen, D. J. & Pastor-Corrales, M. A. ( 1996; ). Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45, 469–478.[CrossRef]
    [Google Scholar]
  45. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  46. Tourte, C. & Manceau, C. ( 1995; ). A strain of Pseudomonas syringae which does not belong to pathovar phaseolicola produces phaseolotoxin. Eur J Plant Pathol 101, 483–490.[CrossRef]
    [Google Scholar]
  47. Tsiamis, G., Mansfield, J. W., Hockenhull, R. & 8 other authors ( 2000; ). Cultivar specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J 19, 3204–3214.[CrossRef]
    [Google Scholar]
  48. Völksch, B. & Weingart, H. ( 1997; ). Comparison of ethylene-producing Pseudomonas syringae strains isolated from kudzu (Pueraria lobata) with Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. glycinea. Eur J Plant Pathol 103, 795–802.[CrossRef]
    [Google Scholar]
  49. Völksch, B. & Weingart, H. ( 1998; ). Toxin production by pathovars of Pseudomonas syringae and their antagonistic activities against epiphytic microorganisms. J Basic Microbiol 38, 135–145.[CrossRef]
    [Google Scholar]
  50. Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A. & Harayama, S. ( 2000; ). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146, 2385–2394.
    [Google Scholar]
  51. Yucel, I., Slaymaker, D., Boyd, C., Murillo, J., Buzzell, R. I. & Keen, N. T. ( 1994; ). Avirulence gene avrPphC from Pseudomonas syringae pv. phaseolicola 3121: a plasmid-borne homologue of avrC closely linked to an avrD allele. Mol Plant–Microbe Interact 7, 677–679.[CrossRef]
    [Google Scholar]
  52. Zhang, Y. X. & Patil, S. S. ( 1997; ). The phtE locus in the phaseolotoxin gene cluster has ORFs with homologies to genes encoding amino acid transferases, the AraC family of transcriptional factors, and fatty acid desaturases. Mol Plant–Microbe Interact 10, 947–960.[CrossRef]
    [Google Scholar]
  53. Zhou, C., Yang, Y. & Jong, A. Y. ( 1990; ). Miniprep in ten minutes. Biotechniques 8, 172–173.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26635-0
Loading
/content/journal/micro/10.1099/mic.0.26635-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error