1887

Abstract

, an oral pathogen, can internalize within primary gingival epithelial cells (GECs) through an invasion mechanism mediated by interactions between . fimbriae and integrins on the surface of the GECs. Fimbriae–integrin-based signalling events were studied by fluorescence microscopy, and the subcellular localization of integrin-associated signalling molecules paxillin and focal adhesion kinase (FAK), and the architecture of the actin and microtubule cytoskeleton were examined. GECs infected with . for 30 min demonstrated significant redistribution of paxillin and FAK from the cytosol to cell peripheries and assembly into focal adhesion complexes. In contrast, a fimbriae-deficient mutant of . did not contribute substantially to activation of paxillin or FAK. After 24 h, the majority of paxillin and FAK had returned to the cytoplasm with significant co-localization with . in the perinuclear region. Wild-type . induced nucleation of actin filaments forming microspike-like protrusions and long stable microfilaments distributed throughout the cells. Fimbriae mutants promoted a rich cortical actin meshwork accompanied by membrane ruffling dispersed along the cell membrane. Remarkable disassembly and nucleation of the actin and microtubule filamentous network was observed following 24 h infection with either wild-type or fimbriae-deficient mutants of . . The results show that fimbriated . cells induce formation of integrin-associated focal adhesions with subsequent remodelling of the actin and tubulin cytoskeleton.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26483-0
2003-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492417.html?itemId=/content/journal/micro/10.1099/mic.0.26483-0&mimeType=html&fmt=ahah

References

  1. Alrutz, M. A. & Isberg, R. R. ( 1998; ). Involvement of focal adhesion kinase in invasin-mediated uptake. Proc Natl Acad Sci U S A 95, 13658–13663.[CrossRef]
    [Google Scholar]
  2. Belton, C. M., Izutsu, K. T., Goodwin, P. G., Park, Y. & Lamont, R. J. ( 1999; ). Fluorescence image analysis of the association between Porphyromonas gingivalis and gingival epithelial cells. Cell Microbiol 1, 215–223.[CrossRef]
    [Google Scholar]
  3. Chen, T., Nakayama, K., Belliveau, L. & Duncan, M. J. ( 2001; ). Porphyromonas gingivalis gingipains and adhesion to epithelial cells. Infect Immun 69, 3048–3056.[CrossRef]
    [Google Scholar]
  4. Clark, E. A. & Brugge, J. S. ( 1995; ). Integrins and signal transduction pathways, the road taken. Science 268, 233–239.[CrossRef]
    [Google Scholar]
  5. Coombes, B. K. & Mahony, J. B. ( 2002; ). Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell Microbiol 4, 447–460.[CrossRef]
    [Google Scholar]
  6. Darveau, R., Belton, C. M., Reife, R. & Lamont, R. J. ( 1998; ). Local chemokine paralysis: a novel pathogenic mechanism for Porphyromonas gingivalis. Infect Immun 66, 1660–1665.
    [Google Scholar]
  7. Dorn, B. R., Burks, J. N., Seifert, K. N. & Progulske-Fox, A. ( 2000; ). Invasion of endothelial and epithelial cells by strains of Porphyromonas gingivalis. FEMS Microbiol Lett 187, 139–144.[CrossRef]
    [Google Scholar]
  8. Gilmore, A. P. & Burridge, K. ( 1996; ). Molecular mechanisms for focal adhesion assembly through regulation of protein–protein interactions. Curr Biol 4, 647–651.
    [Google Scholar]
  9. Huang, G. T. J., Kim, D., Lee, J. K. H., Kuramitsu, H. K. & Haake, S. K. ( 2001; ). Interleukin-8 and intracellular adhesion molecule 1 regulation in oral epithelial cells by selected periodontal bacteria: multiple effects of Porphyromonas gingivalis via antagonistic mechanisms. Infect Immun 69, 1364–1372.[CrossRef]
    [Google Scholar]
  10. Izutsu, K. T., Belton, C. M., Chan, A., Fatherazi, S., Kanter, J. P., Park, Y. & Lamont, R. J. ( 1996; ). Involvement of calcium in interactions between gingival epithelial cells and Porphyromonas gingivalis. FEMS Microbiol Lett 144, 145–150.[CrossRef]
    [Google Scholar]
  11. Lamont, R. J., Chan, A., Belton, C. M., Izutsu, K. T., Vasel, D. & Weinberg, A. ( 1995; ). Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63, 3878–3885.
    [Google Scholar]
  12. Love, M. R., McMillan, M. D., Park, Y. & Jenkinson, H. F. ( 2000; ). Coinvasion of dentinal tubules by Porphyromonas gingivalis and Streptococcus gordonii depends upon binding specificity of streptococcal antigen I/II adhesin. Infect Immun 68, 1359–1365.[CrossRef]
    [Google Scholar]
  13. Martinez, J. J. & Hultgren, S. J. ( 2002; ). Requirement of Rho-family GTPases in the invasion of type 1-piliated uropathogenic Escherichia coli. Cell Microbiol 4, 19–28.[CrossRef]
    [Google Scholar]
  14. McGee, K., Holmfeldt, P. & Fallman, M. ( 2003; ). Microtubule-dependent regulation of Rho GTPases during internalisation of Yersinia pseudotuberculosis. FEBS Lett 533, 35–41.[CrossRef]
    [Google Scholar]
  15. Metheniti, A., Paraskevopoulou, N., Lambropoulou, M. & Marmaras, V. J. ( 2001; ). Involvement of FAK/Src complex in the processes of Escherichia coli phagocytosis by insect hemocytes. FEBS Lett 496, 55–59.[CrossRef]
    [Google Scholar]
  16. Nakagawa, I., Amano, A., Kuboniwa, M., Nakamura, T., Kawabata, S. & Hamada, S. ( 2002; ). Functional differences among FimA variants of Porphyromonas gingivalis and their effects on adhesion to and invasion of human epithelial cells. Infect Immun 70, 277–285.[CrossRef]
    [Google Scholar]
  17. Nakhjiri, S. F., Park, Y., Yilmaz, O., Chung, W. O., Watanabe, K., El-Sabaeny, A., Park, K. & Lamont, R. J. ( 2001; ). Inhibition of epithelial cell apoptosis by Porphyromonas gingivalis. FEMS Microbiol Lett 200, 145–149.[CrossRef]
    [Google Scholar]
  18. Njoroje, T., Genco, R. J., Sojar, H. T. & Genco, C. A. ( 1997; ). A role for fimbriae in Porphyromonas gingivalis invasion of oral epithelial cells. Infect Immun 65, 1980–1984.
    [Google Scholar]
  19. Ozeri, V., Rosenshine, I., Ben-Ze'Ev, A., Bokoch, G. M., Jou, T. S. & Hanski, E. ( 2001; ). De novo formation of focal complex-like structures in host cells by invading streptococci. Mol Microbiol 3, 561–573.
    [Google Scholar]
  20. Reddy, M. A., Wass, C. A., Kim, K. S., Schlaepfer, D. D. & Prasadarao, N. V. ( 2000; ). Involvement of focal adhesion kinase in Escherichia coli invasion of human brain microvascular endothelial cells. Infect Immun 68, 6423–6430.[CrossRef]
    [Google Scholar]
  21. Schaller, M. D. ( 2001; ). Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540, 1–21.[CrossRef]
    [Google Scholar]
  22. Schlaepfer, D. D., Hauck, C. R. & Sieg, D. J. ( 1999; ). Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71, 435–478.[CrossRef]
    [Google Scholar]
  23. Schoenwaelder, S. M. & Burridge, K. ( 1999; ). Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11, 274–286.[CrossRef]
    [Google Scholar]
  24. Turner, C. E. ( 2000; ). Paxillin and focal adhesion signalling. Nat Cell Biol 2, E231–E236.[CrossRef]
    [Google Scholar]
  25. Wang, T., Zhang, Y., Chen, W., Park, Y., Lamont, R. J. & Hackett, M. ( 2002; ). Reconstructed protein arrays from 3D HPLC/tandem mass spectrometry and 2D gels: complementary approaches to Porphyromonas gingivalis protein expression. Analyst 127, 1450–1456.[CrossRef]
    [Google Scholar]
  26. Watanabe, K., Yilmaz, O., Nakhjiri, S. F., Belton, C. M. & Lamont, R. J. ( 2001; ). Association of mitogen activated protein kinase pathways with gingival epithelial cell responses to Porphyromonas gingivalis. Infect Immun 69, 6731–6737.[CrossRef]
    [Google Scholar]
  27. Watarai, M., Funato, S. & Sasakawa, C. ( 1996; ). Interaction of Ipa proteins of Shigella flexneri with α 5 β 1 integrin promotes entry of the bacteria into mammalian cells. J Exp Med 183, 991–999.[CrossRef]
    [Google Scholar]
  28. Waterman-Storer, C. M. ( 1998; ). Microtubules and microscopes: how the development of light microscopic imaging technologies has contributed to discoveries about microtubule dynamics in living cells. Mol Biol Cell 12, 3263–3271.
    [Google Scholar]
  29. Weinberg, A., Belton, C. M., Park, Y. & Lamont, R. J. ( 1997; ). Role of fimbriae in Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 65, 313–316.
    [Google Scholar]
  30. Xie, H., Cai, S. & Lamont, R. J. ( 1997; ). Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infect Immun 65, 2265–2271.
    [Google Scholar]
  31. Xie, H., Chung, W., Park, Y. & Lamont, R. J. ( 2000; ). Regulation of the Porphyromonas gingivalis fimA (fimbrillin) gene. Infect Immun 68, 6574–6579.[CrossRef]
    [Google Scholar]
  32. Yamada, K. M. & Geiger, B. ( 1997; ). Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 9, 76–85.[CrossRef]
    [Google Scholar]
  33. Yilmaz, O., Watanabe, K. & Lamont, R. J. ( 2002; ). Involvement of integrins in fimbriae-mediated binding and invasion by Porphyromonas gingivalis. Cell Microbiol 4, 305–314.[CrossRef]
    [Google Scholar]
  34. Young, V. B., Falkow, S. & Schoolnik, G. K. ( 1992; ). The invasin protein of Yersinia enterocolitica: internalization of invasin bearing bacteria by eukaryotic cells is associated with reorganization of the cytoskeleton. J Cell Biol 116, 197–207.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26483-0
Loading
/content/journal/micro/10.1099/mic.0.26483-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error