1887

Abstract

-Glucose uptake in germinating wild-type conidia is an energy-requiring process mediated by at least two transport systems of differing affinities for glucose: a low-affinity system ( ∼1·4 mM) and a high-affinity system ( ∼16 μM). The low-affinity system is inducible by glucose; the high-affinity system is subject to glucose repression effected by the carbon catabolite repressor CreA and is absent in mutant conidia, which exhibit resistance to -sorbose toxicity. An intermediate-affinity system ( ∼400 μM) is present in conidia germinating in derepressing conditions. derepressed mutants show enhanced sensitivity to -sorbose. The high-affinity uptake system appears to be responsible for the uptake of this toxic sugar.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26349-0
2003-08-01
2021-05-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492129.html?itemId=/content/journal/micro/10.1099/mic.0.26349-0&mimeType=html&fmt=ahah

References

  1. Arst H. N. Jr, Bailey C. 1977; The regulation of carbon metabolism in Aspergillus nidulans . In Genetics and Physiology of Aspergillus pp 131–146 Edited by Smith J. E., Pateman J. A. London: Academic Press;
  2. Arst H. N. Jr, Cove D. J. 1973; Nitrogen metabolite repression in Aspergillus nidulans . Mol Gen Genet 126:111–141
    [Google Scholar]
  3. Arst H. N. Jr, Scazzocchio C. 1985; Formal genetics and molecular biology of the control of gene expression in Aspergillus nidulans . In Gene Manipulations in Fungi pp 309–343 Edited by Bennet J. W., Lasure L. L. New York: Academic Press;
  4. Arst H. N. Jr, Tollervey D., Dowzer C. E., Kelly J. M. 1990; An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite derepression. Mol Microbiol 4:851–854
    [Google Scholar]
  5. Bailey C., Arst H. N. Jr 1975; Carbon catabolite repression in Aspergillus nidulans . Eur J Biochem 51:573–577
    [Google Scholar]
  6. Boles E., Hollenberg C. P. 1997; The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111
    [Google Scholar]
  7. Brown C. E., Romano A. H. 1969; Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans . J Bacteriol 100:1198–1203
    [Google Scholar]
  8. Ciriacy M., Reifenberger E. 1997; Hexose transport. In Yeast Sugar Metabolism pp 45–65 Edited by Zimmermann F. K., Entian K. D. Lancaster: Technomic Publishing Co;
  9. Clutterbuck A. J. 1973; Aspergillus nidulans . In Handbook of Genetics pp 447–510 Edited by King R. C. New York: Plenum Press;
  10. Coons D. M., Boulton R. B., Bisson L. F. 1995; Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae . J Bacteriol 177:3251–3258
    [Google Scholar]
  11. Cove D. J. 1966; The induction and repression of nitrate reductase in the fungus Aspergillus nidulans . Biochim Biophys Acta 113:51–56
    [Google Scholar]
  12. d'Enfert C. 1997; Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa . Fungal Genet Biol 21:163–172
    [Google Scholar]
  13. Desai J. D., Modi V. V. 1977; Regulation of glucose transport in Aspergillus nidulans . Experientia 33:726–727
    [Google Scholar]
  14. Diallinas G., Gorfinkel L., Arst H. N. Jr, Cecchetto G., Scazzocchio C. 1995; Genetic and molecular characterization of a gene encoding a wide specificity purine permease of A. nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes. J Biol Chem 270:8610–8622
    [Google Scholar]
  15. Dowzer C. E., Kelly J. M. 1989; Cloning of the creA gene from Aspergillus nidulans : a gene involved in carbon catabolite repression. Curr Genet 15:457–459
    [Google Scholar]
  16. Dowzer C. E., Kelly J. M. 1991; Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans . Mol Cell Biol 11:5701–5709
    [Google Scholar]
  17. Elorza M. V., Arst H. N. Jr 1971; Sorbose resistant mutants of Aspergillus nidulans . Mol Gen Genet 111:185–193
    [Google Scholar]
  18. Felenbok B., Kelly J. M. 1996; Regulation of carbon metabolism in mycelial fungi. In The Mycota. III: Biochemistry and Molecular Biology pp 369–380 Edited by Brambl R., Marzluf G. Berlin: Springer;
  19. Fuhrmann G. F., Völker B. 1993; Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots. Biochim Biophys Acta 1145180–182
    [Google Scholar]
  20. Hynes M. J., Kelly J. M. 1977; Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Mol Gen Genet 150:193–204
    [Google Scholar]
  21. Johnston M. 1999; Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends Genet 15:29–33
    [Google Scholar]
  22. Kruckeberg A. L. 1996; The hexose transporter family of Saccharomyces cerevisiae . Arch Microbiol 166:283–292
    [Google Scholar]
  23. Kruckeberg A. L., Walsh M. C., van Dam K. 1998; How do yeast cells sense glucose?. BioEssays 20:972–976
    [Google Scholar]
  24. Kulmburg P., Mathieu M., Dowzer C., Kelly J., Felenbok B. 1993; Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans . Mol Microbiol 7:847–857
    [Google Scholar]
  25. Leatherbarrow R. J. 1990; Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci 15:455–458
    [Google Scholar]
  26. MacCabe A. P., Orejas M., Ramón D. 2001; Aspergillus nidulans as a model organism for the study of the expression of genes encoding enzymes of relevance in the food industry. In Applied Mycology and Biotechnology , vol. I, Agriculture and Food Production pp 239–265 Edited by Khachatourians G. G., Arora D. K. Amsterdam: Elsevier;
    [Google Scholar]
  27. Mark C. G., Romano A. H. 1971; Properties of the hexose transport system of Aspergillus nidulans . Biochim Biophys Acta 249:216–226
    [Google Scholar]
  28. Özcan S., Johnston M. 1999; Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569
    [Google Scholar]
  29. Özcan S., Leong T., Johnston M. 1996; Rgt1p of Saccharomyces cerevisiae , a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16:6419–6426
    [Google Scholar]
  30. Peñalva M. A. 2001; A fungal perspective on human inborn errors of metabolism: alkaptonuria and beyond. Fungal Genet Biol 34:1–10
    [Google Scholar]
  31. Peñalva M. A., Arst H. N. Jr 2002; Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66:426–446
    [Google Scholar]
  32. Roberts C. F. 1963; The genetic analysis of carbohydrate utilization in Aspergillus nidulans . J Gen Microbiol 31:45–58
    [Google Scholar]
  33. Rolland F., Winderickx J., Thevelein J. M. 2002; Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201
    [Google Scholar]
  34. Romano A. H., Kornberg H. L. 1968; Regulation of sugar utilization by Aspergillus nidulans . Biochim Biophys Acta 158:491–493
    [Google Scholar]
  35. Romano A. H., Kornberg H. L. 1969; Regulation of sugar uptake by Aspergillus nidulans . Proc Roy Soc B 173:475–490
    [Google Scholar]
  36. Scarborough G. A. 1970; Sugar transport in Neurospora crassa . II. A second glucose transport system. J Biol Chem 245:3985–3987
    [Google Scholar]
  37. Schleissner C., Olivera E. R., Fernandez-Valverde M., Luengo J. M. 1994; Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate. J Bacteriol 176:7667–7676
    [Google Scholar]
  38. Schneider R. P., Wiley W. R. 1971; Kinetic characteristics of the two glucose transport systems in Neurospora crassa . J Bacteriol 106:479–486
    [Google Scholar]
  39. Shroff R. A., O'Connor S. M., Hynes M. J., Lockington R. A., Kelly J. M. 1997; Null alleles of creA , the regulator of carbon catabolite repression in Aspergillus nidulans . Fungal Genet Biol 22:28–38
    [Google Scholar]
  40. Tani S., Katsuyama Y., Hayashi T., Suzuki H., Kato M., Gomi K., Kobayashi T., Tsukagoshi N. 2001; Characterization of the amyR gene encoding a transcriptional activator for the amylase genes in Aspergillus nidulans . Curr Genet 39:10–15
    [Google Scholar]
  41. Tazebay U. H., Sophianopoulou V., Cubero B., Scazzocchio C., Diallinas G. 1995; Post-transcriptional control and kinetic characterization of proline transport in germinating conidiospores of Aspergillus nidulans . FEMS Microbiol Lett 132:27–37
    [Google Scholar]
  42. Torres N. V., Riol-Cimas J. M., Wolschek M., Kubicek C. P. 1996; Glucose transport by Aspergillus niger : the low-affinity carrier is only formed during growth on high glucose concentrations. Appl Microbiol Biotechnol 44:790–794
    [Google Scholar]
  43. Walsh M. C., Smits H. P., Scholte M., van Dam K. 1994; Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J Bacteriol 176:953–958
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26349-0
Loading
/content/journal/micro/10.1099/mic.0.26349-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error