1887

Abstract

-Glucose uptake in germinating wild-type conidia is an energy-requiring process mediated by at least two transport systems of differing affinities for glucose: a low-affinity system ( ∼1·4 mM) and a high-affinity system ( ∼16 μM). The low-affinity system is inducible by glucose; the high-affinity system is subject to glucose repression effected by the carbon catabolite repressor CreA and is absent in mutant conidia, which exhibit resistance to -sorbose toxicity. An intermediate-affinity system ( ∼400 μM) is present in conidia germinating in derepressing conditions. derepressed mutants show enhanced sensitivity to -sorbose. The high-affinity uptake system appears to be responsible for the uptake of this toxic sugar.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26349-0
2003-08-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492129.html?itemId=/content/journal/micro/10.1099/mic.0.26349-0&mimeType=html&fmt=ahah

References

  1. Arst, H. N., Jr & Bailey, C. ( 1977; ). The regulation of carbon metabolism in Aspergillus nidulans. In Genetics and Physiology of Aspergillus, pp. 131–146. Edited by J. E. Smith & J. A. Pateman. London: Academic Press.
  2. Arst, H. N., Jr & Cove, D. J. ( 1973; ). Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126, 111–141.[CrossRef]
    [Google Scholar]
  3. Arst, H. N., Jr & Scazzocchio, C. ( 1985; ). Formal genetics and molecular biology of the control of gene expression in Aspergillus nidulans. In Gene Manipulations in Fungi, pp. 309–343. Edited by J. W. Bennet & L. L. Lasure. New York: Academic Press.
  4. Arst, H. N., Jr, Tollervey, D., Dowzer, C. E. & Kelly, J. M. ( 1990; ). An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite derepression. Mol Microbiol 4, 851–854.[CrossRef]
    [Google Scholar]
  5. Bailey, C. & Arst, H. N., Jr ( 1975; ). Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51, 573–577.[CrossRef]
    [Google Scholar]
  6. Boles, E. & Hollenberg, C. P. ( 1997; ). The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21, 85–111.[CrossRef]
    [Google Scholar]
  7. Brown, C. E. & Romano, A. H. ( 1969; ). Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans. J Bacteriol 100, 1198–1203.
    [Google Scholar]
  8. Ciriacy, M. & Reifenberger, E. ( 1997; ). Hexose transport. In Yeast Sugar Metabolism, pp. 45–65. Edited by F. K. Zimmermann & K. D. Entian. Lancaster: Technomic Publishing Co.
  9. Clutterbuck, A. J. ( 1973; ). Aspergillus nidulans. In Handbook of Genetics, pp. 447–510. Edited by R. C. King. New York: Plenum Press.
  10. Coons, D. M., Boulton, R. B. & Bisson, L. F. ( 1995; ). Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae. J Bacteriol 177, 3251–3258.
    [Google Scholar]
  11. Cove, D. J. ( 1966; ). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113, 51–56.[CrossRef]
    [Google Scholar]
  12. d'Enfert, C. ( 1997; ). Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 21, 163–172.[CrossRef]
    [Google Scholar]
  13. Desai, J. D. & Modi, V. V. ( 1977; ). Regulation of glucose transport in Aspergillus nidulans. Experientia 33, 726–727.[CrossRef]
    [Google Scholar]
  14. Diallinas, G., Gorfinkel, L., Arst, H. N., Jr, Cecchetto, G. & Scazzocchio, C. ( 1995; ). Genetic and molecular characterization of a gene encoding a wide specificity purine permease of A. nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes. J Biol Chem 270, 8610–8622.[CrossRef]
    [Google Scholar]
  15. Dowzer, C. E. & Kelly, J. M. ( 1989; ). Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15, 457–459.[CrossRef]
    [Google Scholar]
  16. Dowzer, C. E. & Kelly, J. M. ( 1991; ). Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11, 5701–5709.
    [Google Scholar]
  17. Elorza, M. V. & Arst, H. N., Jr ( 1971; ). Sorbose resistant mutants of Aspergillus nidulans. Mol Gen Genet 111, 185–193.[CrossRef]
    [Google Scholar]
  18. Felenbok, B. & Kelly, J. M. ( 1996; ). Regulation of carbon metabolism in mycelial fungi. In The Mycota. III: Biochemistry and Molecular Biology, pp. 369–380. Edited by R. Brambl & G. Marzluf. Berlin: Springer.
  19. Fuhrmann, G. F. & Völker, B. ( 1993; ). Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots. Biochim Biophys Acta 1145, 180–182.[CrossRef]
    [Google Scholar]
  20. Hynes, M. J. & Kelly, J. M. ( 1977; ). Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Mol Gen Genet 150, 193–204.[CrossRef]
    [Google Scholar]
  21. Johnston, M. ( 1999; ). Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends Genet 15, 29–33.[CrossRef]
    [Google Scholar]
  22. Kruckeberg, A. L. ( 1996; ). The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166, 283–292.[CrossRef]
    [Google Scholar]
  23. Kruckeberg, A. L., Walsh, M. C. & van Dam, K. ( 1998; ). How do yeast cells sense glucose? BioEssays 20, 972–976.
    [Google Scholar]
  24. Kulmburg, P., Mathieu, M., Dowzer, C., Kelly, J. & Felenbok, B. ( 1993; ). Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7, 847–857.[CrossRef]
    [Google Scholar]
  25. Leatherbarrow, R. J. ( 1990; ). Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci 15, 455–458.[CrossRef]
    [Google Scholar]
  26. MacCabe, A. P., Orejas, M. & Ramón, D. ( 2001; ). Aspergillus nidulans as a model organism for the study of the expression of genes encoding enzymes of relevance in the food industry. In Applied Mycology and Biotechnology, vol. I, Agriculture and Food Production, pp. 239–265. Edited by G. G. Khachatourians & D. K. Arora. Amsterdam: Elsevier.
  27. Mark, C. G. & Romano, A. H. ( 1971; ). Properties of the hexose transport system of Aspergillus nidulans. Biochim Biophys Acta 249, 216–226.[CrossRef]
    [Google Scholar]
  28. Özcan, S. & Johnston, M. ( 1999; ). Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63, 554–569.
    [Google Scholar]
  29. Özcan, S., Leong, T. & Johnston, M. ( 1996; ). Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16, 6419–6426.
    [Google Scholar]
  30. Peñalva, M. A. ( 2001; ). A fungal perspective on human inborn errors of metabolism: alkaptonuria and beyond. Fungal Genet Biol 34, 1–10.[CrossRef]
    [Google Scholar]
  31. Peñalva, M. A. & Arst, H. N., Jr ( 2002; ). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66, 426–446.[CrossRef]
    [Google Scholar]
  32. Roberts, C. F. ( 1963; ). The genetic analysis of carbohydrate utilization in Aspergillus nidulans. J Gen Microbiol 31, 45–58.[CrossRef]
    [Google Scholar]
  33. Rolland, F., Winderickx, J. & Thevelein, J. M. ( 2002; ). Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2, 183–201.[CrossRef]
    [Google Scholar]
  34. Romano, A. H. & Kornberg, H. L. ( 1968; ). Regulation of sugar utilization by Aspergillus nidulans. Biochim Biophys Acta 158, 491–493.[CrossRef]
    [Google Scholar]
  35. Romano, A. H. & Kornberg, H. L. ( 1969; ). Regulation of sugar uptake by Aspergillus nidulans. Proc Roy Soc B 173, 475–490.[CrossRef]
    [Google Scholar]
  36. Scarborough, G. A. ( 1970; ). Sugar transport in Neurospora crassa. II. A second glucose transport system. J Biol Chem 245, 3985–3987.
    [Google Scholar]
  37. Schleissner, C., Olivera, E. R., Fernandez-Valverde, M. & Luengo, J. M. ( 1994; ). Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate. J Bacteriol 176, 7667–7676.
    [Google Scholar]
  38. Schneider, R. P. & Wiley, W. R. ( 1971; ). Kinetic characteristics of the two glucose transport systems in Neurospora crassa. J Bacteriol 106, 479–486.
    [Google Scholar]
  39. Shroff, R. A., O'Connor, S. M., Hynes, M. J., Lockington, R. A. & Kelly, J. M. ( 1997; ). Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genet Biol 22, 28–38.[CrossRef]
    [Google Scholar]
  40. Tani, S., Katsuyama, Y., Hayashi, T., Suzuki, H., Kato, M., Gomi, K., Kobayashi, T. & Tsukagoshi, N. ( 2001; ). Characterization of the amyR gene encoding a transcriptional activator for the amylase genes in Aspergillus nidulans. Curr Genet 39, 10–15.[CrossRef]
    [Google Scholar]
  41. Tazebay, U. H., Sophianopoulou, V., Cubero, B., Scazzocchio, C. & Diallinas, G. ( 1995; ). Post-transcriptional control and kinetic characterization of proline transport in germinating conidiospores of Aspergillus nidulans. FEMS Microbiol Lett 132, 27–37.[CrossRef]
    [Google Scholar]
  42. Torres, N. V., Riol-Cimas, J. M., Wolschek, M. & Kubicek, C. P. ( 1996; ). Glucose transport by Aspergillus niger: the low-affinity carrier is only formed during growth on high glucose concentrations. Appl Microbiol Biotechnol 44, 790–794.
    [Google Scholar]
  43. Walsh, M. C., Smits, H. P., Scholte, M. & van Dam, K. ( 1994; ). Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J Bacteriol 176, 953–958.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26349-0
Loading
/content/journal/micro/10.1099/mic.0.26349-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error