1887

Abstract

Glycolysis is one of the central routes of carbon catabolism in . Several glycolytic enzymes, including the key enzyme glyceraldehyde-3-phosphate dehydrogenase, are encoded in the hexacistronic operon. Expression of this operon is induced by a variety of sugars and amino acids. Under non-inducing conditions, expression is repressed by the CggR repressor protein, the product of the promoter-proximal gene of the operon. Here, it is shown that the amount of glyceraldehyde-3-phosphate dehydrogenase encoded by the second gene of the operon exceeds that of the CggR repressor by about 100-fold. This differential synthesis was attributed to an mRNA processing event that takes place at the 3′ end of the open reading frame and to differential segmental stabilities of the resulting cleavage products. The mRNA specifying the truncated gene is quickly degraded, whereas the downstream processing products encompassing are quite stable. This increased stability is conferred by the presence of a stem–loop structure at the 5′ end of the processed mRNAs. Mutations were introduced in the region of the cleavage site. A mutation affecting the stability of the stem–loop structure immediately downstream of the processing site had two effects. First, the steady-state transcript pattern was drastically shifted towards the primary transcripts; second, the stability of the processed mRNA containing the destabilized stem–loop structure was strongly decreased. This results in a reduction of the amount of glyceraldehyde-3-phosphate dehydrogenase in the cell. It is concluded that mRNA processing is involved in differential syntheses of the proteins encoded by the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26078-0
2003-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/3/mic149751.html?itemId=/content/journal/micro/10.1099/mic.0.26078-0&mimeType=html&fmt=ahah

References

  1. Båga, M., Göransson, M., Normark, S. & Uhlin, B. E. ( 1988; ). Processed mRNA with differential stability in the regulation of E. coli pilin gene expression. Cell 52, 197–206.[CrossRef]
    [Google Scholar]
  2. Belasco, J. G., Beatty, J. T., Adams, C. W., von Gabain, A. & Cohen, S. N. ( 1985; ). Differential expression of photosynthetic genes in Rhodopseudomonas capsulata results from segmental differences in stability within a polycistronic transcript. Cell 40, 171–181.[CrossRef]
    [Google Scholar]
  3. Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S. & Cohen, S. N. ( 2002; ). Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 99, 9697–9702.[CrossRef]
    [Google Scholar]
  4. Bi, W. & Stambrook, P. J. ( 1998; ). Site-directed mutagenesis by combined chain reaction. Anal Biochem 256, 137–140.[CrossRef]
    [Google Scholar]
  5. Braun, F., Le Derout, J. & Régnier, P. ( 1998; ). Ribosomes inhibit an RNase E cleavage which induces the decay of the rpsO mRNA of Escherichia coli. EMBO J 17, 4790–4797.[CrossRef]
    [Google Scholar]
  6. Burchhardt, G., Keshav, K. F., Yomano, L. & Ingram, L. O. ( 1993; ). Mutational analysis of segmental stabilization of transcripts from the Zymomonas mobilis gappgk operon. J Bacteriol 175, 2327–2333.
    [Google Scholar]
  7. Büttner, K., Bernhardt, J., Scharf, C. & 7 other authors ( 2001; ). A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22, 2908–2935.[CrossRef]
    [Google Scholar]
  8. Condon, C., Putzer, H., Luo, D. & Grunberg-Manago, M. ( 1997; ). Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli. J Mol Biol 268, 235–242.[CrossRef]
    [Google Scholar]
  9. Condon, C., Rourera, J., Brechemier-Baey, D. & Putzer, H. ( 2002; ). Ribonuclease M5 has few, if any, mRNA substrates in Bacillus subtilis. J Bacteriol 184, 2845–2849.[CrossRef]
    [Google Scholar]
  10. DiMari, J. F. & Bechhofer, D. H. ( 1993; ). Initiation of mRNA decay in Bacillus subtilis. Mol Microbiol 7, 705–717.[CrossRef]
    [Google Scholar]
  11. Dobrindt, U., Piechaczek, K., Schierhorn, A., Fischer, G., Hecker, M. & Hacker, J. ( 2002; ). Influence of the leuX-encoded on the regulation of gene expression in pathogenic Escherichia coli. J Mol Microbiol Biotechnol 4, 205–209.
    [Google Scholar]
  12. Eddy, C. K., Keshav, K. F., An, H., Utt, E. A., Mejia, J. P. & Ingram, L. O. ( 1991; ). Segmental message stabilization as a mechanism for differential expression from the Zymomonas mobilis gap operon. J Bacteriol 173, 245–254.
    [Google Scholar]
  13. Faires, N., Tobisch, S., Bachem, S., Martin-Verstraete, I., Hecker, M. & Stülke, J. ( 1999; ). The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J Mol Microbiol Biotechnol 1, 141–148.
    [Google Scholar]
  14. Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G. & Aymerich, S. ( 2000; ). Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275, 14031–14037.[CrossRef]
    [Google Scholar]
  15. Fujihara, A., Tomatsu, H., Inagaki, S., Tadaki, T., Ushida, C., Himeno, H. & Muto, A. ( 2002; ). Detection of tmRNA-mediated trans-translation products in Bacillus subtilis. Genes Cells 7, 343–350.[CrossRef]
    [Google Scholar]
  16. Fujita, Y. & Fujita, T. ( 1987; ). The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc Natl Acad Sci U S A 84, 4524–4528.[CrossRef]
    [Google Scholar]
  17. Gerth, U., Krüger, E., Derré, I., Msadek, T. & Hecker, M. ( 1998; ). Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28, 787–802.
    [Google Scholar]
  18. Gillet, R. & Felden, B. ( 2001; ). Emerging views on tmRNA-mediated protein tagging and ribosome rescue. Mol Microbiol 42, 879–885.[CrossRef]
    [Google Scholar]
  19. Grunberg-Manago, M. ( 1999; ). Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 33, 193–227.[CrossRef]
    [Google Scholar]
  20. Hambraeus, G., Persson, M. & Rutberg, B. ( 2000; ). The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis. Microbiology 146, 3051–3059.
    [Google Scholar]
  21. Hambraeus, G., Karhumaa, K. & Rutberg, B. ( 2002; ). A 5′ stem–loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Microbiology 148, 1795–1803.
    [Google Scholar]
  22. Hansen, A., Pfeiffer, T., Zuleeg, T., Limmer, S., Ciesiolka, J., Feltens, R. & Hartmann, R. K. ( 2001; ). Exploring the minimal substrate requirements for trans-cleavage by RNase P holoenzyme from Escherichia coli and Bacillus subtilis. Mol Microbiol 41, 131–143.[CrossRef]
    [Google Scholar]
  23. Hauser, N. C., Vingrom, M., Scheideler, M., Krems, B., Hellmuth, K., Entian, K. D. & Hoheisel, J. D. ( 1998; ). Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae. Yeast 14, 1209–1221.[CrossRef]
    [Google Scholar]
  24. Heck, C., Balzer, A., Fuhrmann, O. & Klug, G. ( 2000; ). Initial events in the degradation of the polycistronic puf mRNA in Rhodobacter capsulatus and consequences for further processing steps. Mol Microbiol 35, 90–100.[CrossRef]
    [Google Scholar]
  25. Henkin, T. M. ( 2000; ). Transcription termination control in bacteria. Curr Opin Microbiol 3, 149–153.[CrossRef]
    [Google Scholar]
  26. Homuth, G., Masuda, S., Mogk, A., Kobayashi, Y. & Schumann, W. ( 1997; ). The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 179, 1153–1164.
    [Google Scholar]
  27. Homuth, G., Mogk, A. & Schumann, W. ( 1999; ). Post-transcriptional regulation of the Bacillus subtilis dnaK operon. Mol Microbiol 32, 1183–1197.[CrossRef]
    [Google Scholar]
  28. Jäger, S., Fuhrmann, O., Heck, C., Hebermehl, M., Schiltz, E., Rauhut, R. & Klug, G. ( 2001; ). An mRNA degrading complex in Rhodobacter capsulatus. Nucleic Acids Res 29, 4581–4588.[CrossRef]
    [Google Scholar]
  29. Klug, G., Adams, C. W., Belasco, J., Doerge, B. & Cohen, S. N. ( 1987; ). Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic hairpin loop region of the Rhodobacter capsulatus puf operon. EMBO J 6, 3515–3520.
    [Google Scholar]
  30. Kunst, F. & Rapoport, G. ( 1995; ). Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177, 2403–2407.
    [Google Scholar]
  31. Langbein, I., Bachem, S. & Stülke, J. ( 1999; ). Specific interaction of the RNA-binding domain of the Bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT. J Mol Biol 293, 795–805.[CrossRef]
    [Google Scholar]
  32. Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M. & Stülke, J. ( 2001; ). Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41, 409–422.[CrossRef]
    [Google Scholar]
  33. Ludwig, H., Rebhan, N., Blencke, H.-M., Merzbacher, M. & Stülke, J. ( 2002; ). Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45, 543–553.[CrossRef]
    [Google Scholar]
  34. Martin-Verstraete, I., Débarbouillé, M., Klier, A. & Rapoport, G. ( 1992; ). Mutagenesis of the Bacillus subtilis ‘−12, −24’ promoter of the levanase operon and evidence for the existence of an upstream activating sequence. J Mol Biol 226, 85–99.[CrossRef]
    [Google Scholar]
  35. McDowall, K. J., Lin-Chao, S. & Cohen, S. N. ( 1994; ). A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem 269, 10790–10796.
    [Google Scholar]
  36. Møller, T., Franch, T., Udesen, C., Gerdes, K. & Valentin-Hansen, P. ( 2002; ). Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 16, 1696–1706.[CrossRef]
    [Google Scholar]
  37. Moszer, I., Rocha, E. P. & Danchin, A. ( 1999; ). Codon usage and lateral gene transfer in Bacillus subtilis. Curr Opin Microbiol 2, 524–528.[CrossRef]
    [Google Scholar]
  38. Mudd, E. A., Prentki, P., Belin, D. & Krisch, H. M. ( 1988; ). Processing of unstable bacteriophage T4 gene 32 mRNAs into a stable species requires Escherichia coli ribonuclease E. EMBO J 7, 3601–3607.
    [Google Scholar]
  39. Newbury, S. F., Smith, N. H. & Higgins, C. F. ( 1987; ). Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51, 1131–1143.[CrossRef]
    [Google Scholar]
  40. Nilsson, P., Naureckiene, S. & Uhlin, B. E. ( 1996; ). Mutations affecting mRNA processing and fimbrial biogenesis in the Escherichia coli pap operon. J Bacteriol 178, 683–690.
    [Google Scholar]
  41. Rauhut, R. & Klug, G. ( 1999; ). mRNA degradation in bacteria. FEMS Microbiol Rev 23, 353–370.[CrossRef]
    [Google Scholar]
  42. Reizer, J., Bachem, S., Reizer, A., Arnaud, A., Saier, M. H., Jr & Stülke, J. ( 1999; ). Novel phosphotransferase system genes revealed by genome analysis – the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 145, 3419–3429.
    [Google Scholar]
  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Schirmer, F., Ehrt, S. & Hillen, W. ( 1997; ). Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol 179, 1329–1336.
    [Google Scholar]
  45. Stülke, J., Martin-Verstraete, I., Zagorec, M., Rose, M., Klier, A. & Rapoport, G. ( 1997; ). Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25, 65–78.[CrossRef]
    [Google Scholar]
  46. Tobisch, S., Zühlke, D., Bernhardt, J., Stülke, J. & Hecker, M. ( 1999; ). Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 181, 6996–7004.
    [Google Scholar]
  47. Vellanoweth, R. L. ( 1993; ). Translation and its regulation. In Bacillus subtilis and Other Gram-Positive Bacteria. Biochemistry, Physiology, and Molecular Biology, pp. 699–711. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  48. Wagner, R. ( 2000; ). Transcription Regulation in Prokaryotes. Oxford: Oxford University Press.
  49. Wang, W. & Bechhofer, D. H. ( 1997; ). Bacillus subtilis RNase III gene: cloning, function of the gene in Escherichia coli, and construction of Bacillus subtilis strains with altered rnc loci. J Bacteriol 179, 7379–7385.
    [Google Scholar]
  50. Wiegert, T. & Schumann, W. ( 2001; ). SsrA-mediated tagging in Bacillus subtilis. J Bacteriol 183, 3885–3889.[CrossRef]
    [Google Scholar]
  51. Woodson, K. & Devine, K. M. ( 1994; ). Analysis of a ribose transport operon from Bacillus subtilis. Microbiology 140, 1829–1838.[CrossRef]
    [Google Scholar]
  52. Zuker, M. ( 1989; ). Computer prediction of RNA structure. Methods Enzymol 180, 262–288.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26078-0
Loading
/content/journal/micro/10.1099/mic.0.26078-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error